Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274161

RESUMEN

Polymer additive manufacturing has advanced from prototyping to producing essential parts with improved precision and versatility. Despite challenges like surface finish and wear resistance, new materials and metallic reinforcements in polymers have expanded its applications, enabling stronger, more durable parts for demanding industries like aerospace and structural engineering. This research investigates the tribological behaviour of FFF surfaces by integrating copper and aluminium reinforcement particles into a PLA (polylactic acid) matrix. Pin-on-disc tests were conducted to evaluate friction coefficients and wear rates. Statistical analysis was performed to study the correlation of the main process variables. The results confirmed that reinforced materials offer interesting characteristics despite their complex use, with the roughness of the fabricated parts increasing by more than 300%. This leads to an increase in the coefficient of friction, which is related to the variation in the material's mechanical properties, as the hardness increases by more than 75% for materials reinforced with Al. Despite this, their performance is more stable, and the volume of material lost due to wear is reduced by half. These results highlight the potential of reinforced polymers to improve the performance and durability of components manufactured through additive processes.

2.
Int J Biol Macromol ; 279(Pt 4): 135582, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270902

RESUMEN

The effects of lecithin addition on the properties of konjac glucomannan (KGM) hydrogels prepared by controlled heating were investigated. Weak hydrogels were formed at 1 % KGM, which contained relatively thick strands. The shear viscosity and shear modulus of the hydrogels increased with increasing KGM concentration. The pure KGM hydrogels exhibited relatively poor boundary lubrication at all polysaccharide concentrations studied. The inclusion of lecithin (0.001 % to 0.20 %) in the KGM hydrogels appreciably altered their rheological properties, which could be modulated by varying the lecithin/KGM ratio. Microstructural analysis showed that lecithin caused a substantial restructuring of the strands in the hydrogel network. Lecithin was also found to be a highly effective lubricant in the KGM hydrogels. Incorporation of trace amounts of lecithin led to a significant improvement in the lubricating properties of the KGM hydrogels, especially boundary lubrication. Fourier transform infrared (FTIR) and differential canning calorimetry (DSC) analyses provided information about the molecular interactions between the lecithin and KGM molecules. The ability of lecithin to increase the lubricating performance of the KGM hydrogels was mainly attributed to the adsorption of phospholipid-biopolymer complexes onto solid surfaces, which reduced the friction between them.

3.
Food Chem ; 463(Pt 1): 141145, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39260176

RESUMEN

Modifying food texture is a valuable approach to enhancing the quality of life for patients with dysphagia. Incorporating thickened soy protein-based liquid systems (SPLS) into their diet not only improves protein intake but also promotes safer swallowing. However, the properties of thickened SPLS are crucial for safe swallowing, may vary depending on the conformation of the thickened polysaccharides used. In this study, SPLS with different levels of thickening were prepared using xanthan gum, pectin and guar gum. The influence of polysaccharide conformation on the rheological (shear and extensional) and tribological properties of thickened SPLS was investigated. The results revealed that xanthan gum-thickened SPLS exhibiting the highest shear viscosity (110.073 Pa.s) and extensional viscosity (7.405 Pa.s), which increased with polysaccharide concentration. Meanwhile, xanthan gum possessed the strongest lubricating properties. These results shed light on the development of plant protein-based solutions for dysphagia management.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39230523

RESUMEN

Wear is a ubiquitous phenomenon that limits the life of many engineered components with sliding interfaces through the gradual removal of material. The wear of polymers is crucial in many applications, ranging from bearings to orthopedic implants to nanolithography processes. The wear rate of polymers is strongly affected by the stress and temperature at the interface. The effects of temperature and stress are often described empirically since the wear process involves complex interactions between multiple asperities on rough surfaces over a range of length scales. Nanoscale tribology experiments at the single-asperity level have provided new insights into the underlying mechanisms of wear. Experiments on hard covalently bonded materials, including silicon and diamond, have demonstrated that wear is an atomic attrition wear process that can be modeled using stress-assisted transition state theory. Here, we examine the wear of a common polymer, polymethylmethacrylate (PMMA), at the nanoscale as a function of stress and temperature and show that the polymer wear is controlled by a combination of atomic attrition and viscoelastic relaxation. While the wear experiments are conducted at the nanoscale via atomic force microscopy, the results show that accounting for the local stress distribution at the contact interface is critical to understanding the wear behavior, an effect that was not considered in earlier studies on hard materials. Using a model that accounts for the stress distribution, we demonstrate the ability to predict the wear volume within 8%.

5.
Physiol Behav ; : 114690, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251153

RESUMEN

We investigated the effects of complex textural attributes of food i.e. lubricity and oral coating, on appetite ratings, food intake, salivary and gut peptides for the first time. Milk protein-rich beverages (whey and casein) were instrumentally analyzed (tribology, viscosity and adsorption, latter representing oral coating) using in vitro measurements. Then these protein beverage preloads differing in their coating properties (low coating, medium coating and high coating) were assessed in two cross-over satiety trials (Study 1, n=37; Study 2, n=15; Total n= 52). Fullness ratings increased in the high coating beverage condition (p<0.05) only after 20 min with limited effects on other time points, suggesting a sporadic effect of oral coating on appetite ratings (n=37). There was a correlation between concentration of protein in saliva and appetite ratings; the higher the concentration of protein in saliva the lower the desire to eat (r = - 0.963; p <0.05) and prospective food consumption ratings (r =- 0.980; p <0.05). Human saliva was more lubricating after ingesting preload with high coating properties, thus explaining the results on appetite ratings. There was no effect of oral coating on energy intake and gut peptides (n=15), suggesting that complex textural attributes having influence on oral processing might not have any effect on the later parts of the satiety cascade. Oral coating/ lubricity appears to have a subtle and sporadic effect on appetite suppression, which needs further investigation with changing macronutrients/energy load and degree of coating/ lubricity.

6.
Heliyon ; 10(16): e35999, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247351

RESUMEN

High Entropy Alloys (HEAs) are currently a subject of significant research interest in the fields of materials science and engineering. They are rapidly evolving due to their exceptional properties, and there is considerable focus on expanding their application potential by developing HEA coatings on various substrate materials. This area of study holds promise for advancing technology and innovation in diverse industries. In this study, a novel equiatomic AlBeSiTiV Light Weight HEA was synthesized via mechanical alloying and was sprayed on the substrate SS316 by the thermal spray process. The microstructural characterization revealed that synthesized HEA had a major FCC phase and the average coating thickness was observed to be 150 µm. The average microhardness was measured to be 975 ± 13 HV for the coating which was five times than the substrate. The coated samples' wear resistance was found out using a pin-on-disc apparatus by varying the wear process parameters and Taguchi's L27 Orthogonal Array was used to interpret the parametric influence on wear rate. ANOVA and regression analysis revealed applied load to be the most significant factor followed by distance and velocity. The major wear mechanisms observed were adhesion abrasion and oxidation, and the formation of tribolayer was observed at higher velocity and distance.

7.
J Texture Stud ; 55(4): e12857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107967

RESUMEN

The tribological properties of 19 commercial food products, grouped into six categories (yogurt, dressings, spreads, porridges, emulsified sauces, and syrups) were investigated in relation to their rheological (dynamic oscillatory shear test) and nutritional properties (fat, carbohydrate, and protein). A tribological system (a glass ball and three polydimethylsiloxane pins) generated the extended Stribeck curve, monitoring friction factors (f) over an extended range of sliding speed (v) (10-8 to 100 m/s). Tribological parameters (f, v) at four inflection points dividing the frictional regimes (X1, breakaway point between the static and kinetic regimes; X1-X2, boundary; X2-X3, mixed; X3-X4, hydrodynamic regimes) and the slope between X3 and X4 (s) were subjected to principal component analysis and hierarchical clustering on principal components, using rheological and nutritional parameters as quantitative supplementary variables. Tribological patterns were predominantly influenced by viscosity, viscoelasticity, yield stress, fat content, and the presence of particles (e.g., sugar, proteins, and fibers) and pasting materials (e.g., starches and modified starches). The 19 tribological patterns were classified into 3 clusters: low f and s for fat- and/or viscoelastic-dominant foods (Cluster 1), low f and high s for food emulsions and/or those with low extent of shear-thinning (Cluster 2), and high f at the boundary regime either for the most viscous foods or for those in the presence of particulates (Cluster 3). These results suggest that the compositional and rheological properties have a more profound impact on the classification of complex tribological patterns than the categories of food products.


Asunto(s)
Valor Nutritivo , Reología , Viscosidad , Elasticidad , Alimentos , Fricción , Análisis de los Alimentos , Análisis de Componente Principal
8.
Heliyon ; 10(15): e35554, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170290

RESUMEN

Composite materials have become prominent in the aerospace, automotive, wind energy, biomedical, and machine tool industries. This has demanded the evaluation of the dynamic mechanical and tribological behaviour of composites to understand their performance and ensure their reliability and safety in varied operating conditions. In this study, the effect of halloysite nano-clay addition on the dynamic mechanical and tribological properties of the carbon/glass hybrid composites was investigated. The composites were produced with the vacuum assisted resin infusion process. by varying the content of halloysite nano-clay (1, 3, and 5 wt%). The dynamic mechanical properties of the manufactured composites were examined at temperatures ranging from 30 °C to 180 °C. The tribological properties of the specimens were assessed by varying the applied load (10, 20, and 30 N), sliding speed (1.5, 3, and 4.5 m/s) and sliding distance (500, 1000, and 1500 m). Box-Behnken design was utilized to optimize the number of experiments. The results showed that the halloysite-added samples had better dynamic mechanical and tribological properties than the carbon/glass hybrid composites. Especially, hybrid composites containing 3 wt% halloysite outperformed the other composites investigated. A scanning electron microscope (SEM) was used to examine the worn surface and wreckage in the investigated composite specimens.

9.
J Orthop Res ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182184

RESUMEN

Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.

10.
J Biomech ; 174: 112272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146899

RESUMEN

The synovium plays a crucial role in diarthrodial joint health, and its study has garnered appreciation as synovitis has been linked to osteoarthritis symptoms and progression. Quantitative synovium structure-function data, however, remain sparse. In the present study, we hypothesized that tissue glycosaminoglycan (GAG) content contributes to the low friction properties of the synovium. Bovine and human synovium tribological properties were evaluated using a custom friction testing device in two different cases: (1) proteoglycan depletion to isolate the influence of tissue GAGs in the synovium friction response and (2) interleukin-1 (IL) treatment to observe inflammation-induced structural and functional changes. Following proteoglycan depletion, synovium friction coefficients increased while GAG content decreased. Conversely, synovium explants treated with the proinflammatory cytokine IL exhibited elevated GAG concentrations and decreased friction coefficients. For the first time, a relationship between synovium friction coefficient and GAG concentration is demonstrated. The study of synovium tribology is necessary to fully understand the mechanical environment of the healthy and diseased joint.


Asunto(s)
Fricción , Proteoglicanos , Membrana Sinovial , Membrana Sinovial/metabolismo , Humanos , Bovinos , Animales , Proteoglicanos/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-1/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-39097138

RESUMEN

INTRODUCTION: Anatomic total shoulder arthroplasty (TSA) is a common surgical intervention for various shoulder pathologies, predominantly glenohumeral osteoarthritis. While generally considered safe and effective, complications remain a challenge. Short stem implants, aim to preserve bone stock and reduce complications. However, concerns about a specific short stem implant (Univers Apex; Arthrex, Naples, FL, USA) have surfaced due to high reported rates relatively early aseptic loosening. METHODS: This retrospective study analyzed 116 consecutive TSA patients with Univers Apex implants from 2004 to 2022. 15 revision cases were assessed for radiographic loosening, and explanted implants were examined for damage using a 0-3 scale. Histopathological analysis evaluated cellular responses to wear debris. RESULTS: Of the patients, 13% (15/116) required revision at 23.2 months on average. A distinct radiographic loosening pattern was identified, with humeral component subsidence and thinning of the proximal humeral cortex. Histopathology revealed a robust inflammatory response to wear debris, with a potential association between macrophage infiltration, hinge damage, and polyethylene wear. CONCLUSION: This study reveals a notable rate of early aseptic humeral loosening with the Univers Apex short stem implant, emphasizing concerns raised in previous reports and providing a potential explanation for the high rate of early failure. Surgeons should exercise caution and closely monitor patients with this implant design.

12.
Materials (Basel) ; 17(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124407

RESUMEN

The Ti-5Al-5V-5Mo-3Cr (Ti-5553) alloy is a relatively novel difficult-to-cut material with limited machinability and tool life analysis available in the literature, and hence requires further investigation. This study focuses on the machining and tribological performance of Ti-5553 under high-speed finish turning (150 m/min, 175 m/min, and 200 m/min) via novel mono/bi-layered PVD-coated WC tools. A base AlTiN coating is used as the reference monolayer coating, with AlCrN, diamond-like ta-C, and TiAlSiN coatings each deposited on top of a base AlTiN coating, totaling four separate coated tools (one monolayer and three bi-layer). Tool life, cutting forces, workpiece surface quality, and tribological chip analysis are among the subjects of investigation in this study. Overall, the AlTiN/AlCrN coated tool outperformed all the other combinations: an improvement of ~19% in terms of tool life in reference to the base AlTiN coating when averaging across the three speeds; lowest surface roughness values: ~0.30, 0.33, and 0.64 µm; as well as the lowest chip back surface roughness values: ~0.80, 0.68, and 0.81 µm at 150, 175, and 200 m/min, respectively. These results indicate that the AlTiN/AlCrN coating is an excellent candidate for industrial applications involving high-speed machining of Ti-5553.

13.
J Funct Biomater ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39194662

RESUMEN

This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.

14.
Sci Rep ; 14(1): 19693, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181943

RESUMEN

In engineering materials, surface anisotropy is known in certain textured patterns that appear during the manufacturing process. In biology, there are numerous examples of mechanical systems which combine anisotropic surfaces with the motion, elicited due to some actuation using muscles or stimuli-responsive materials, such as highly ordered cellulose fiber arrays of plant seeds. The systems supplemented by the muscles are rather fast actuators, because of the relatively high speed of muscle contraction, whereas the latter ones are very slow, because they generate actuation depending on the daily changes in the environmental air humidity. If the substrate has ordered surface profile, one can expect certain statistical order of potential trajectories (depending on the order of the spatial distribution of the surface asperities). If not, the expected trajectories can be statistically rather random. The same presumably holds true for the artificial miniature robots that use actuation in combination with frictional anisotropy. In order to prove this hypothesis, we developed numerical model helping us to study abovementioned cases of locomotion in 2D space on an uneven terrain. We show that at extremely long times, these systems tends to behave according to the rules of ballistic diffusion. Physically, it means that their motion tends to be associated with the "channels" of the patterned substrate. Such a motion is more or less the same as it should be in the uniform space. Such asymptotic behavior is specific for the motion in model regular potential and would be impossible on more realistic (and complex) fractal reliefs. However, one can expect that in any kind of the potential with certain symmetry (hexagonal or rhombic, for example), where it is still possible to find the ways, the motion along fixed direction during long (or even almost infinite) time intervals is possible.

15.
Polymers (Basel) ; 16(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204530

RESUMEN

Polyoxymethylene (POM), an engineering polymer commonly used in tribological applications, is often reinforced with fossil-based fibers such as carbon and/or glass fibers to improve its properties. To find more sustainable solutions, in this study, the tribological performance of POM/short cellulose fiber composites at different sliding conditions is investigated. An improvement in the wear coefficient of roughly 69% is observed at the harshest conditions of 5 MPa and 1 m · s-1 with only 10 wt.% cellulose fibers. The friction behavior is furthermore stabilized through fiber addition, as the unfilled polymer did not show a steady state. No signs of thermo-oxidative degradation are found after tribological testing. This study presents promising results for sustainable wear-resistant polymer materials in tribological applications.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39214494

RESUMEN

BACKGROUND: The objective of this study was to perform a polyethylene wear test on a non-mechanically linked total elbow arthroplasty implant using a clinically relevant in-vitro elbow wear test methodology that simulated ten years of use in the light to moderate activity of daily living range. MATERIALS AND METHODS: The test protocol applied an 80° arc of ulnohumeral motion beginning at 30° shy of full extension and progressing to 110° of flexion. Force was applied at 7° to recreate a valgus load on the elbow. A variable joint load profile at a frequency of 0.5 Hz was employed. The implants were tested for 5 million cycles (Mc) in a bovine serum lubricant. Implant component failure was characterized and polyethylene wear was determined gravimetrically. RESULTS: After 5 Mc the small polyethylene bushing wear rate was 0.56 mg/Mc. The medium size wear rate was 0.28 mg/Mc. Three large sizes were tested and the average wear rate was 0.39 ± 0.07 mg/Mc. No implant failure was identified. CONCLUSION: The test recreated an in vivo loading environment and measured polyethylene wear rates at specified cycle counts. The test demonstrated less wear than other joint replacements. Further clinical evaluation is necessary to determine if this translates into reduced complications of total elbow replacement associated with wear.

17.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952166

RESUMEN

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Asunto(s)
Ocimum basilicum , Mucílago de Planta , Reología , Semillas , Ocimum basilicum/química , Semillas/química , Mucílago de Planta/química , Animales , Leche/química , Viscosidad , Trastornos de Deglución , Malus/química , Jugos de Frutas y Vegetales/análisis , Humanos , Agua , Polvos , Lubrificación
18.
J Texture Stud ; 55(4): e12850, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952176

RESUMEN

This study examined the effects of spread formulation and the structural/lubricant properties of six different commercial hazelnut and cocoa spreads on sensory perception. Rheology, tribology, and quantitative descriptive analysis (QDA) was assessed by also evaluating the correlation coefficients between the quality descriptor and the rheological and textural parameters. The viscosity was evaluated at different temperatures to better simulate conditions before and after ingestion. Tribological analysis was executed at 37°C to mimic the human oral cavity. The effect of saliva presence and the number of runs on tribological behaviors was investigated. Moreover, textural, calorimetric, and particle size distribution measurements were performed to reinforce the correlation between structural/thermal parameters (e.g., firmness, stickiness, sugar melting point) and sensory aspects. "Visual viscosity," defined as a sensory attribute evaluated prior to consumption, negatively correlated with apparent viscosity measured at 20°C and 10 s-1, whereas "body," defined during oral processing and related to creaminess, positively correlated with apparent viscosity measured at 37°C and 50 s-1. These attributes were mainly influenced by particulate microstructure and solid volume fraction within the formulation. Textural stickiness positively correlated with sensory "adhesiveness" and was related to fat composition and milk powder addition, while "sweetness" was related to sucrose content and sugar melting enthalpy. Tribological data provided meaningful information related to particle-derived attributes, as well as after-coating perception (fattiness/oiliness), thus better predicting food evolution during oral consumption.


Asunto(s)
Cacao , Corylus , Reología , Gusto , Humanos , Viscosidad , Cacao/química , Boca/fisiología , Tamaño de la Partícula , Adulto , Femenino , Masculino , Saliva/química , Adulto Joven
19.
Curr Res Food Sci ; 9: 100795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036623

RESUMEN

Astringency of phenolic-rich foods is a key tactile perception responsible for acceptability/rejection of plant extracts as ingredients in formulations. Covalent conjugation of phenolic extracts with plant proteins might be a promising strategy to control astringency, but suffers from a lack of mechanistic understanding from the lubrication point of view. To shed light on this, this ex vivo study evaluated the effect of conjugation of a phenolic grape seed extract (GSE) with legume protein (lupin, LP) on tribological and surface adsorption performance of GSE in the absence and presence of human saliva (ex vivo). Tribological results confirmed GSE had an inferior lubrication capacity as compared to LP. The lubrication performance of LP-GSE dispersions was comparable to their corresponding LP dispersion (p > 0.05) when covalently conjugated with LP (LP-GSE) with increasing LP:GSE ratio up to 1:0.04 w/w and at a specific degree of conjugation (DC: 2%). Tribological and surface adsorption measurements confirmed the tendency of GSE to interact with human saliva (ex vivo, n = 17 subjects), impairing the lubricity of salivary films. The covalent bonding of LP to GSE hindered GSE's interaction with human saliva, implying the potential influence of covalent conjugation on attenuating astringency. LP appeared to compete with human saliva for surface adsorption and governed the lubrication behaviour in LP-GSE dispersions. Findings from this study provide valuable knowledge to guide the rational design of sustainable, functional foods using conjugation of phenolics with plant proteins to incorporate larger proportions of health-promoting phenolics while controlling astringency, which needs validation by sensory trials.

20.
Micromachines (Basel) ; 15(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064432

RESUMEN

Thin-film electrode arrays (TFEAs) have been developed as an alternative to conventional electrode arrays (CEAs) used in cochlear implants. However, TFEAs produced by microfabrication techniques have not yet been used clinically because their structural and mechanical properties are far from those of CEAs. The aim of this study is to design, fabricate, and investigate the mechanical and tribological behavior and evaluate the performance of different TFEA designs. Finite Element Analysis (FEA) is performed to determine the elastic properties of several designs. A custom-build experimental setup is designed to observe the tribological behavior in different speeds and environments where frictional (lateral) and vertical force (normal force) are measured on a flat surface and within artificial cochlea. According to the FEA results, the maximum stiffness of the CEA is 37.93 mN/mm and 0.363 mN/mm and TFEA-4 has a maximum stiffness of 39.08 mN/mm and 0.306 mN/mm in the longitudinal and transverse axes, respectively. It is shown experimentally that adding a dummy wire to the carrier of the EA enhances both its longitudinal and transverse stiffness, thereby postponing the initiation of dynamic sliding due to the elevated buckling limit. It is also revealed that the type of TFEA support structure affects both normal and frictional forces, as well as the coefficient of friction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA