Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.913
Filtrar
1.
Methods Mol Biol ; 2856: 327-339, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283462

RESUMEN

Disentangling the relationship of enhancers and genes is an ongoing challenge in epigenomics. We present STARE, our software to quantify the strength of enhancer-gene interactions based on enhancer activity and chromatin contact data. It implements the generalized Activity-by-Contact (gABC) score, which allows predicting putative target genes of candidate enhancers over any desired genomic distance. The only requirement for its application is a measurement of enhancer activity. In addition to regulatory interactions, STARE calculates transcription factor (TF) affinities on gene level. We illustrate its usage on a public single-cell data set of the human heart by predicting regulatory interactions on cell type level, by giving examples on how to integrate them with other data modalities, and by constructing TF affinity matrices.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Epigenómica , Programas Informáticos , Humanos , Cromatina/genética , Cromatina/metabolismo , Epigenómica/métodos , Epigenoma , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Biología Computacional/métodos
2.
Methods Mol Biol ; 2856: 419-432, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283466

RESUMEN

Imaging-based spatial multi-omics technologies facilitate the analysis of higher-order genomic structures, gene transcription, and the localization of proteins and posttranslational modifications (PTMs) at the single-allele level, thereby enabling detailed observations of biological phenomena, including transcription machinery within cells and tissues. This chapter details the principles of such technologies, with a focus on DNA/RNA/immunofluorescence (IF) sequential fluorescence in situ hybridization (seqFISH). A comprehensive step-by-step protocol for image analysis is provided, covering image preprocessing, spot detection, and data visualization. For practical application, complete Jupyter Notebook codes are made available on GitHub ( https://github.com/Ochiai-Lab/seqFISH_analysis ).


Asunto(s)
ADN , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , ARN , Programas Informáticos , Hibridación Fluorescente in Situ/métodos , ARN/genética , ARN/análisis , ARN/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , ADN/genética , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Animales
3.
Gene ; 932: 148893, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197797

RESUMEN

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Asunto(s)
Carotenoides , Crocus , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Proteínas de Plantas , Crocus/genética , Crocus/metabolismo , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Perfilación de la Expresión Génica/métodos , Ciclohexenos/metabolismo , Transcriptoma , Terpenos/metabolismo , Glucósidos/metabolismo , Glucósidos/biosíntesis
4.
Synth Syst Biotechnol ; 10(1): 49-57, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39224149

RESUMEN

As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.

5.
Methods Mol Biol ; 2848: 269-297, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240529

RESUMEN

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Asunto(s)
Biotinilación , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Mapeo de Interacción de Proteínas , Factores de Transcripción , Mapeo de Interacción de Proteínas/métodos , Humanos , Factores de Transcripción/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Unión Proteica , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Endonucleasas , Enzimas Multifuncionales
6.
Cell Rep ; 43(9): 114695, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39250314

RESUMEN

MicroRNAs (miRNAs) play crucial roles in physiological functions and disease, but the regulation of their nuclear biogenesis remains poorly understood. Here, BioID on Drosha, the catalytic subunit of the microprocessor complex, reveals its proximity to splicing factor proline- and glutamine (Q)-rich (SFPQ), a multifunctional RNA-binding protein (RBP) involved in forming paraspeckle nuclear condensates. SFPQ depletion impacts both primary and mature miRNA expression, while other paraspeckle proteins (PSPs) or the paraspeckle scaffolding RNA NEAT1 do not, indicating a paraspeckle-independent role. Comprehensive transcriptomic analyses show that SFPQ loss broadly affects RNAs and miRNA host gene (HG) expression, influencing both their transcription and the stability of their products. Notably, SFPQ protects the oncogenic miR-17∼92 polycistron from degradation by the nuclear exosome targeting (NEXT)-exosome complex and is tightly linked with its overexpression across a broad variety of cancers. Our findings reveal a dual role for SFPQ in regulating miRNA HG transcription and stability, as well as its significance in cancers.

7.
FEBS J ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250546

RESUMEN

Cyclin-dependent kinase 9 (CDK9), a catalytic subunit of the positive transcription elongation factor b (P-TEFb) complex, is a global transcriptional elongation factor associated with cell proliferation. CDK9 activity is regulated by certain histone acetyltransferases, such as p300, GCN5 and P/CAF. However, the impact of males absent on the first (MOF) (also known as KAT8 or MYST1) on CDK9 activity has not been reported. Therefore, the present study aimed to elucidate the regulatory role of MOF on CDK9. We present evidence from systematic biochemical assays and molecular biology approaches arguing that MOF interacts with and acetylates CDK9 at the lysine 35 (i.e. K35) site, and that this acetyl-group can be removed by histone deacetylase HDAC1. Notably, MOF-mediated acetylation of CDK9 at K35 promotes the formation of the P-TEFb complex through stabilizing CDK9 protein and enhancing its association with cyclin T1, which further increases RNA polymerase II serine 2 residues levels and global transcription. Our study reveals for the first time that MOF promotes global transcription by acetylating CDK9, providing a new strategy for exploring the comprehensive mechanism of the MOF-CDK9 axis in cellular processes.

8.
Biochim Biophys Acta Gene Regul Mech ; 1867(4): 195059, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226990

RESUMEN

Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.

10.
J Virol ; : e0093524, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283124

RESUMEN

The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.

11.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273357

RESUMEN

Genetic factors play a significant role in the pathogenesis of mitral valve diseases, including mitral valve prolapse (MVP) and mitral valve regurgitation. Genes like Fibrillin-1 (FBN1), Filamin A (FLNA), matrix metalloproteinase 2 (MMP2), and SRY-box transcription factor 9 (SOX9) are known to influence mitral valve pathology but knowledge of the exact mechanism is far from clear. Data regarding serum parameters, transesophageal echocardiography, and genetic and histopathologic parameters were investigated in 54 patients who underwent cardiovascular surgery for mitral valve regurgitation. The possible association between Fibrillin-1, Filamin A, MMP2, and SOX9 gene expressions was checked in relationship with the parameters of systemic inflammatory response. The mRNA expression levels (RQ-relative quantification) were categorized into three distinct groups: low (RQ < 1), medium/normal (RQ = 1-2), and high (RQ > 2). Severe fibrosis of the mitral valve was reflected by high expression of FBN1 and low expression of MMP2 (p < 0.05). The myxoid degeneration level was associated with the mRNA expression level for FBN1 and a low lymphocyte-monocyte ratio was associated with an increased mRNA expression of FBN1 (p < 0.05). A high number of monocytes was associated with high values of FBN1 whereas the increase in the number of lymphocytes was associated with high levels of MMP2. In addition, we observed that the risk of severe hyalinization was enhanced by a low mRNA expression of FLNA and/or SOX9. In conclusion, a lower FLNA mRNA expression can reflect the aging process that is highlighted in mitral valve pathology as a higher risk for hyalinization, especially in males, that might be prevented by upregulation of the SOX9 gene. FBN1 and MMP2 influence the inflammation-related fibrotic degeneration of the mitral valve. Understanding the genetic base of mitral valve pathology can provide insights into disease mechanisms, risk stratification, and potential therapeutic targets.


Asunto(s)
Fibrilina-1 , Filaminas , Metaloproteinasa 2 de la Matriz , Válvula Mitral , Factor de Transcripción SOX9 , Humanos , Fibrilina-1/genética , Fibrilina-1/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Filaminas/metabolismo , Filaminas/genética , Masculino , Femenino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Persona de Mediana Edad , Válvula Mitral/patología , Válvula Mitral/metabolismo , Anciano , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/genética , Insuficiencia de la Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/patología , Adipoquinas
12.
mBio ; : e0024024, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269169

RESUMEN

Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.

13.
J Exp Bot ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269757

RESUMEN

Gibberellins (GA) are diterpenoids that are categorized as one of main hormones that promote major developmental responses such as germination and stem elongation in plants. DELLA proteins act as the key repressors of GA responses. They interact with hundreds of different proteins. While the functioning of DELLA as transcriptional coactivators has also been reported earlier, the actual mechanism still remains elusive. One recent report describes interaction of DELLA with Mediator subunit MED15 as one of the mechanisms contributing to its transcription activation capability (Hernández-García et al. 2024). Interestingly, this mechanism of DELLA-MED15 module-mediated transcription regulation seems to be very ancient conserved from bryophyte Marchantia polymorpha to dicot Arabidopsis thaliana.

14.
J Mol Biol ; : 168779, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241983

RESUMEN

RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.

15.
Immunol Lett ; 270: 106924, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260526

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, abnormal inflammation, and fibrosis of the skin and internal organs, notably the skin and lungs, significantly impairing quality of life. There is currently no cure for SSc, and its etiology remains largely unknown, presenting a primary barrier to effective treatment. We investigated the role of interleukin-21 (IL-21) in the pathogenesis of SSc. METHODS: We assessed the expression levels of fibrosis-related genes in human dermal fibroblasts exposed to IL-21 and TGF beta. We also induced SSc in wild-type C57BL/6 mice and IL-21 knockout (KO) mice with a C57BL/6 background using bleomycin (Bleomycin). Histological analyses were conducted on skin and lung tissues from these mice. The distribution and expression levels of fibrosis-related proteins in the tissues were examined via immunohistochemistry and quantitative real-time PCR. Furthermore, we measured the frequency of Th1, Th2, and Th17 cells among splenocytes through flow cytometry. RESULTS: IL-21 activation led to STAT3 phosphorylation more than TGF beta in dermal fibroblasts. In IL-21 KO mice with BLM-induced SSc, skin thickness and lung fibrosis were reduced. The absence of IL-21 in these mice resulted in suppressed expression of fibrosis-related genes, including Col1a1, Col1a2, Col3a1, CTGF, α-SMA, STAT3, and TGFß, in the skin and lungs. It also led to a decreased frequency of Th1, Th2, and Th17 cells, as well as a lower Th17/Treg ratio among splenocytes, factors known to contribute to the development of SSc. CONCLUSIONS: IL-21 contributes to the development of SSc by promoting the expression of fibrosis-related genes and modulating the levels of CD4+ T cells.

16.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261781

RESUMEN

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Asunto(s)
Antocianinas , Capsicum , Filogenia , Proteínas de Plantas , Capsicum/genética , Capsicum/metabolismo , Antocianinas/biosíntesis , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética , Repeticiones WD40/genética , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
17.
DNA Repair (Amst) ; 142: 103754, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232366

RESUMEN

Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.


Asunto(s)
Reprogramación Celular , Daño del ADN , Transcripción Genética , Humanos , Animales , Reparación del ADN , Diferenciación Celular , Inestabilidad Genómica
18.
Sci Rep ; 14(1): 21361, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266731

RESUMEN

The heat shock response (HSR) is a universal mechanism of cellular adaptation to elevated temperatures and is regulated by heat shock transcription factor 1 (HSF1) or HSF3 in vertebrate endotherms, such as humans, mice, and chickens. We here showed that HSF1 and HSF3 from egg-laying mammals (monotremes), with a low homeothermic capacity, equally possess a potential to maximally induce the HSR, whereas either HSF1 or HSF3 from birds have this potential. Therefore, we focused on cellular adaptation to daily temperature fluctuations and found that HSF1 was required for the proliferation and survival of human cells under daily temperature fluctuations. The ectopic expression of vertebrate HSF1 proteins, but not HSF3 proteins, restored the resistance in HSF1-null cells, regardless of the induction of heat shock proteins. This function was associated with the up-regulation of specific HSF1-target genes. These results indicate the distinct role of HSF1 in adaptation to thermally fluctuating environments and suggest association of homeothermic capacity with functional diversification of vertebrate HSF genes.


Asunto(s)
Adaptación Fisiológica , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Animales , Humanos , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Adaptación Fisiológica/genética , Temperatura , Ratones , Proliferación Celular , Pollos/genética , Supervivencia Celular/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
19.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273296

RESUMEN

With global warming, drought stress is becoming increasingly severe, causing serious impacts on crop yield and quality. In order to survive under adverse conditions such as drought stress, plants have evolved a certain mechanism to cope. The tolerance to drought stress is mainly improved through the synergistic effect of regulatory pathways, such as transcription factors, phytohormone, stomatal movement, osmotic substances, sRNA, and antioxidant systems. This study summarizes the research progress on plant drought resistance, in order to provide a reference for improving plant drought resistance and cultivating drought-resistant varieties through genetic engineering technology.


Asunto(s)
Sequías , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas
20.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273334

RESUMEN

Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes , ARN Bacteriano , ARN Pequeño no Traducido , Listeria monocytogenes/patogenicidad , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Islas Genómicas/genética , Transcripción Genética , Regiones no Traducidas 5' , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Listeriosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA