Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.454
Filtrar
1.
Neuroimage ; 299: 120838, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241899

RESUMEN

Previous investigations on the causal neural mechanisms underlying intertemporal decision making focused on the dorsolateral prefrontal cortex as neural substrate of cognitive control. However, little is known, about the causal contributions of further parts of the frontoparietal control network to delaying gratification, including the pre-supplementary motor area (pre-SMA) and posterior parietal cortex (PPC). Conflicting previous evidence related pre-SMA and PPC either to evidence accumulation processes, choice biases, or response caution. To disentangle between these alternatives, we combined drift diffusion models of decision making with online transcranial magnetic stimulation (TMS) over pre-SMA and PPC during an intertemporal decision task. While we observed no robust effects of PPC TMS, perturbation of pre-SMA activity reduced preferences for larger over smaller rewards. A drift diffusion model of decision making suggests that pre-SMA increases the weight assigned to reward magnitudes during the evidence accumulation process without affecting choice biases or response caution. Taken together, the current findings reveal the computational role of the pre-SMA in value-based decision making, showing that pre-SMA promotes choices of larger, costly rewards by strengthening the sensitivity to reward magnitudes.


Asunto(s)
Corteza Motora , Recompensa , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Masculino , Adulto , Femenino , Adulto Joven , Lóbulo Parietal/fisiología , Descuento por Demora/fisiología , Conducta de Elección/fisiología , Toma de Decisiones/fisiología
2.
J Affect Disord ; 367: 876-885, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260582

RESUMEN

Theta burst stimulation (TBS) is a promising therapy for treatment-resistant major depressive disorder (MDD), but a significant proportion of individuals do not respond adequately, necessitating alternative approaches. This study explores whether individuals meeting minimum recommended physical activity levels demonstrate better responses to TBS compared to physically inactive individuals. Using data from a randomized controlled trial (n = 43), participants were categorized as physically active or inactive based on baseline International Physical Activity Questionnaire (IPAQ) scores. Depression scores (Hamilton Rating Scale for Depression, 17-item; HRSD-17) were assessed at baseline, 4, and 6 weeks of TBS treatment. A significant Time X Group effect adjusted for age and baseline depression was observed. Physically active individuals consistently exhibited lower depression scores across time points. At 4 and 6 weeks, there was a significant increase in between-group differences, indicating that the physically active group derived greater benefits from treatment. At 6 weeks, a significantly higher proportion of responders (≥50 % HRSD-17 reduction) were observed in the physically active compared to inactive group. Physical activity significantly contributed to regression and logistic models predicting treatment response. These findings support the potential role of baseline physical activity in enhancing TBS therapy for MDD.

3.
Mult Scler ; : 13524585241275013, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268655

RESUMEN

BACKGROUND: Many individuals with progressive multiple sclerosis (PMS) are challenged by reduced manual dexterity and limited rehabilitation options. Transcranial direct current stimulation (tDCS) during motor training can improve rehabilitation outcomes. We developed a protocol for remotely supervising tDCS to deliver sessions of stimulation paired with training at home. OBJECTIVE: This study evaluated the effectiveness of at-home tDCS paired with manual dexterity training for individuals with PMS. METHODS: Sixty-five right-hand dominant participants with PMS and hand impairment were randomized to receive either active or sham M1-SO tDCS paired with manual dexterity training over 4 weeks. Clinical outcomes were measured by the changes in Nine-Hole Peg Test (9-HPT) and Dellon-Modified-Moberg-Pick-Up Test (DMMPUT). RESULTS: The intervention had high rates of adherence and completion (98% of participants completed at least 18 of 20 sessions). The active tDCS group demonstrated significant improvement for the left hand compared with baseline in 9-HPT (-5.85 ± 6.19 vs -4.23 ± 4.34, p = 0.049) and DMMPUT (-10.62 ± 8.46 vs -8.97 ± 6.18, p = 0.049). The active tDCS group reported improvements in multiple sclerosis (MS)-related quality of life (mean increase: 5.93 ± 13.04 vs -0.05 ± -8.27; p = 0.04). CONCLUSION: At-home tDCS paired with manual dexterity training is effective for individuals with PMS, with M1-SO tDCS enhancing training outcomes and offering a promising intervention for improving and preserving hand dexterity.

4.
J Transl Med ; 22(1): 843, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272101

RESUMEN

BACKGROUND: Multiple Sclerosis (MS) is an autoimmune disease associated with physical disability, psychological impairment, and cognitive dysfunctions. Consequently, the disease burden is substantial, and treatment choices are limited. In this randomized, double-blind study, we conducted repeated prefrontal electrical stimulation in 40 patients with MS to evaluate mental health variables (quality of life, sleep difficulties, psychological distress) and cognitive dysfunctions (psychomotor speed, working memory, attention/vigilance), marking it as the third largest sample size tDCS research conducted in MS to date. METHODS: The patients were randomly assigned (block randomization method) to two groups of sham (n = 20), or 1.5-mA (n = 20) transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (F3) and right frontopolar cortex (Fp2) with anodal and cathodal stimulation respectively (electrode size: 25 cm2). The treatment included 10 sessions of 20 min of stimulation delivered every other day. Outcome measures were MS quality of life, sleep quality, psychological distress, and performance on a neuropsychological test battery dedicated to cognitive dysfunctions in MS (psychomotor speed, working memory, and attention). All outcome measures were evaluated at the pre-intervention and post-intervention assessments. Both patients and technicians delivering the stimulation were unaware of the type of stimulation being used. RESULTS: Repeated prefrontal real tDCS significantly improved quality of life and reduced sleep difficulties and psychological distress compared to the sham group. It, furthermore, improved psychomotor speed, attention, and vigilance compared to the sham protocol. Improvement in mental health outcome variables and cognitive outperformance were interrelated and could predict each other. CONCLUSIONS: Repeated prefrontal and frontopolar tDCS ameliorates secondary clinical symptoms related to mental health and results in beneficial cognitive effects in patients with MS. These results support applying prefrontal tDCS in larger trials for improving mental health and cognitive dysfunctions in MS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06401928.


Asunto(s)
Salud Mental , Esclerosis Múltiple , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Método Doble Ciego , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Esclerosis Múltiple/psicología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Calidad de Vida , Pruebas Neuropsicológicas , Trastornos del Conocimiento/terapia
5.
Brain Stimul ; 17(5): 1076-1085, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245294

RESUMEN

BACKGROUND: Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE: We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS: In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS: Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION: Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.

6.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267112

RESUMEN

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-39275796

RESUMEN

Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta and sham) while participants saw emotional stimuli with different degrees of pleasantness and level of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant vs unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions - arousal and valence - corroborating the view of a dissociation between these two dimensions of emotions.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39245178

RESUMEN

OBJECTIVE: Research and clinical application of transcranial magnetic stimulation (TMS) for adolescents with major depressive disorder (MDD) has advanced slowly. Significant gaps persist in our understanding of optimized, age-specific protocols and dosing strategies. This study aimed to compare the clinical effects of 1 Hz versus 10 Hz TMS regimens and examine a biomarker-informed treatment approach with glutamatergic intracortical facilitation (ICF). METHOD: Participants with moderate-to-severe symptoms of MDD were randomized to 30 sessions of left prefrontal 1 Hz or 10 Hz TMS, stratified by baseline ICF measures. The primary clinical outcome measure was the Children's Depression Rating Scale, Revised (CDRS-R). The CDRS-R and ICF biomarker were collected weekly. RESULTS: Forty-one participants received either 1 Hz (n = 22) or 10 Hz (n = 19) TMS treatments. CDRS-R scores improved compared to baseline in both 1 Hz and 10 Hz groups. For participants with low ICF at baseline, the overall least squares means of CDRS-R scores over the 6-week trial showed that depressive symptom severity was lower for the group treated with 1 Hz TMS than for those who received 10 Hz TMS. There were no significant changes in weekly ICF measurements across the 6 weeks of TMS treatment. CONCLUSION: Low ICF may reflect optimal glutamatergic N-methyl-d-aspartate (NMDA) receptor activity that facilitates the therapeutic effect of 1 Hz TMS through long-term depression-like mechanisms on synaptic plasticity. The stability of ICF suggests that it is a tonic, trait-like measure of NMDA receptor-mediated neurotransmission, with potential utility to inform parameter selection for therapeutic TMS in adolescents with MDD.

9.
Biochem Genet ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39304639

RESUMEN

The aim of this study was to explore the molecular mechanisms underlying cerebellar transcranial direct current stimulation (ctDCS) as a rehabilitation intervention for patients with ischemic stroke, focusing on the role of microRNAs (miRNAs). Whole-transcriptome sequencing was employed to obtain circulating expression profiles of miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs in patients with ischemic stroke before and after 3-week ctDCS. miRanda software was used to predict the target genes of miRNAs, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to identify biological functions and signaling pathways. Subsequently, competing endogenous RNA (ceRNA) regulatory networks comprising circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA interactions were constructed. Key miRNAs in blood samples were validated through quantitative RT-PCR. In total, 43 miRNAs, 807 lncRNAs, 1,111 circRNAs, and 201 mRNAs were differentially expressed after ctDCS compared with before ctDCS. Bioinformatics analyses revealed significant enrichment of target genes regulated by differentially expressed miRNAs across multiple biological pathways. CeRNA regulatory networks implied that several miRNAs were closely related to the ctDCS. Among them, hsa-miR-181a-5p, hsa-miR-224-5p, and hsa-miR-340-3p showed significantly downregulated expression levels as confirmed by qRT-PCR. This study conducted the first-ever assessment of miRNA expression patterns in patients with ischemic stroke undergoing ctDCS. The findings revealed that ctDCS induces alterations in miRNA levels, suggesting their potential utility as therapeutic markers.

10.
J Oral Rehabil ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305048

RESUMEN

BACKGROUND: Neuroplasticity induced by mandibular advancement appliance (MAD) in patients with obstructive sleep apnoea (OSA) is poorly documented. OBJECTIVE: This randomised placebo-controlled crossover mechanistic study assessed the effects of short-term use of a MAD on corticomotor excitability of the masseter and tongue in patients with OSA. METHODS: Adults (n = 28) with mild or moderate OSA were randomly allocated to sleep with a MAD for 2-weeks with 40% of the maximal protrusion (MAD active position) and without any jaw protrusion (MAD placebo position). The outcomes were assessed at baseline, and after 2 and 6 weeks, with a 2-week washout period. The primary outcome was the amplitude of motor evoked potential (MEP) assessed on the right masseter, right side of tongue and right first dorsal interosseous with transcranial magnetic stimulation. Corticomotor map volume of the same muscles was also assessed. Repeated-measures ANOVAs followed by Tukey test were applied to the data (p < .050). RESULTS: There was a significant increase in the MEP amplitude of the masseter and tongue following the MAD active position compared with the baseline and MAD placebo (Tukey: p < .001). There were no significant MEP amplitude differences between the baseline and placebo positions (p > .050). Moreover, there was a significant increase in corticomotor map volume for the masseter and tongue muscles following the MAD active position compared with baseline and MAD placebo (Tukey: p < .003). CONCLUSION: Excitability of the masseter and tongue motor pathways is, at least transiently, increased in patients with OSA following a short-term use of MAD. This novel finding of MAD-induced neuroplasticity in corticomotor pathways may contribute to a further understanding of the mechanisms of oral appliances for treating OSA.

11.
Eur J Appl Physiol ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305369

RESUMEN

INTRODUCTION: Cerebrovascular reactivity (CVR) describes the vasculature's response to vasoactive stimuli, where prior investigations relied solely on mean data, rather than exploring cardiac cycle differences. METHODS: Seventy-one participants (46 females and 25 males) from two locations underwent TCD measurements within the middle or posterior cerebral arteries (MCA, PCA). Females were tested in the early-follicular phase. The hypercapnia response was assessed using a rebreathing protocol (93% oxygen and 7% carbon dioxide) or dynamic end-tidal forcing as a cerebral blood velocity (CBv) change from 40 to 55-Torr. The hypocapnia response was quantified using a hyperventilation protocol as a CBv change from 40 to 25-Torr. Absolute and relative CVR slopes were compared across cardiac cycle phases, vessels, and biological sexes using analysis of covariance with Tukey post-hoc comparisons. RESULTS: No differences were found between hypercapnia methods used (p > 0.050). Absolute hypercapnic slopes were highest in systole (p < 0.001), with no cardiac cycle differences for absolute hypocapnia (p > 0.050). Relative slopes were largest in diastole and smallest in systole for both hypercapnia and hypocapnia (p < 0.001). Females exhibited greater absolute CVR responses (p < 0.050), while only the relative systolic hypercapnic response was different between sexes (p = 0.001). Absolute differences were present between the MCA and PCA (p < 0.001), which vanished when normalizing data to baseline values (p > 0.050). CONCLUSION: Cardiac cycle variations impact CVR responses, with females displaying greater absolute CVR in some cardiac phases during the follicular window. These findings are likely due to sex differences in endothelial receptors/signalling pathways. Future CVR studies should employ assessments across the cardiac cycle.

12.
Clin Neurophysiol ; 167: 92-105, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39305793

RESUMEN

OBJECTIVE: Transcranial focused ultrasound (TUS) can suppress human motor cortical excitability. However, it is unclear whether the TUS may interact with transcranial magnetic stimulation (TMS) when they co-delivered in multiple trials. METHODS: Nineteen subjects received three different TUS-TMS co-stimulation protocols to the motor cortex including concurrent stimulation (TUS-TMS-C), separated stimulation (TUS-TMS-S), and TMS only. In each condition, two runs of 30 stimulation trials were conducted with a five-minute rest between runs. Motor-evoked potentials (MEP) were recorded during stimulation and at 0, 10, 20, and 30 min after stimulation. The MEP amplitudes after intervention were normalized to the mean pre-intervention MEP amplitude and expressed as MEP ratios. An additional test with TUS alone was applied to all participants to assess whether TUS itself can elicit after-effects. RESULTS: There were no significant after-effects of all three interventions on MEP ratios. However, 11 subjects who showed online inhibition (OI + ) during the TUS-TMS-C protocol, defined as having MEP ratio less than 1 during TUS-TMS-C, showed significant MEP suppression at 10, 20 and 30 min after TUS-TMS-C. In 8 subjects did not show online inhibition (OI-), defined as having MEP ratios greater than 1 during TUS-TMS-C, showed no significant inhibitory after-effects. OI + and OI- status did not change in a follow-up repeat TUS-TMS-C test. TUS alone did not generate inhibitory after-effects in either OI + or OI- participants. CONCLUSIONS: Our results showed that co-delivery of TUS and TMS can elicit inhibitory after-effect in subjects who showed online inhibition, suggesting that TUS and TMS may interact with each other to produce plasticity effects. SIGNIFICANCE: TUS and TMS may interact with each other to modulate cortical excitability.

13.
J Neuroeng Rehabil ; 21(1): 167, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300529

RESUMEN

BACKGROUND: Disorders of Consciousness (DoC) caused by severe brain injuries represent a challenging clinical entity, which is easy to misdiagnosis and lacks effective treatment options. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuroelectric stimulation method that shows promise in improving consciousness for DoC, especially in minimally conscious state (MCS). However, there is little evidence of its effectiveness, especially in RCT studies. METHODS: Twenty MCS patients participated in a double-blind, randomized, crossover, sham-controlled clinical study to evaluate the safety and efficacy of rTMS for MCS. Subjects were randomized into two groups: one group received rTMS-active for 10 consecutive days (n = 10), and the other group received rTMS-sham for 10 consecutive days (n = 10). After a 10-day washout period, the two groups were crossed over and received the opposite treatment. the rTMS protocol consisted of 2,000 pulses per day in the left dorsolateral prefrontal cortex (L-DLPFC), sent at 10 Hz. The stimulation intensity was 90% of the resting motor threshold. Coma Recovery Scale Revised (CRS-R), the main evaluation index, was evaluated before and after each phase in a double-blind manner. Meanwhile RS-EEG and TMS-EEG data were acquired and relative alpha power (RAP), and perturbational complexity index based on state transitions (PCIst) were caculated. RESULTS: One-way ANOVA revealed significantly higher scores in rTMS-active treatment compared to rTMS-sham across various measures, including CRS-R total score, RAP, PCIst (all P < 0.05). Among the 20 MCS patients, 7 (35%) were identified as responders following rTMS treatment. Compared to rTMS-sham, responder scores for CRS-R, RAP, and PCIst (all P < 0.05) were significantly elevated after rTMS-active treatment. Conversely, there was no significant difference observed in non-responders. Furthermore, post-hoc analysis revealed that baseline PCIst was significantly higher in responders than non-responders. Upon a 6-month follow-up, CRS-R scores significantly increased in all 20 patients (P = 0.026). However, the responder group exhibited a more favorable prognosis compared to the non-responder group (P = 0.031). CONCLUSIONS: Applying 10 Hz rTMS to L-DLPFC significantly increased consciousness level in MCS patients. PCIst is a neurophysiological index that has the potential to evaluate and predict therapeutic efficacy. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , identifier: NCT05187000.


Asunto(s)
Trastornos de la Conciencia , Estudios Cruzados , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Método Doble Ciego , Persona de Mediana Edad , Adulto , Trastornos de la Conciencia/terapia , Trastornos de la Conciencia/diagnóstico , Resultado del Tratamiento , Anciano , Estado Vegetativo Persistente/terapia , Estado Vegetativo Persistente/diagnóstico , Electroencefalografía , Adulto Joven
14.
Chin Clin Oncol ; 13(Suppl 1): AB030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295348

RESUMEN

BACKGROUND: Sinonasal tumors, occurring in less than 1% of the general population, represent a rare and challenging subset of pathologies. Lesions that affect the skull base present a varied range of pathological entities, posing significant therapeutic complexities for surgeons. CASE DESCRIPTION: This case series explores the surgical interventions performed on three patients with distinct histologic types of sinonasal tumors invading the skull base. These individuals presented with non-specific symptoms persisting for months to a year, including anosmia, nasal congestion, and epistaxis-all in the absence of neurological deficits. The management approaches were discussed on a multidisciplinary basis. Tumor excision was meticulously performed in a single session using a combination of endonasal endoscopic and transcranial approaches. The tumors were successfully excised, addressing both the intranasal and intracranial components. The pathological spectrum included olfactory neuroblastoma, neuroendocrine atypical carcinoid tumor, and paraganglioma with ectopic adrenocorticotropic hormone production. Reconstruction of the skull base involved the utilization of split calvaria bone graft, fascia, Tisseel glue, and a vascularized nasoseptal mucosa flap. Lumbar drain was not used. None of the patients experienced postoperative cerebrospinal fluid leaks or new neurological deficits, with the only noted complication being a subdural hematoma in one patient at a site distant from the surgical field. Minimal residual tumor was detected on postoperative magnetic resonance imaging. Patients remain in remission up to 12 months after completing adjuvant therapies. CONCLUSIONS: The integration of surgical expertise from otolaryngologists and neurosurgeons in a combined approach enables the removal of tumors from two different directions simultaneously. Proper usage of this multilayer pedicled "double flap" contributes to the success of skull base surgery. This approach is safe and effective. It improves the visualization of the tumor, enhances access to critical areas, increases tumor clearance, and also contributes to optimal oncological outcomes.


Asunto(s)
Endoscopía , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Endoscopía/métodos , Neoplasias de los Senos Paranasales/cirugía , Neoplasias de los Senos Paranasales/patología
15.
Front Hum Neurosci ; 18: 1341707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296918

RESUMEN

Objective: This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources: Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection: Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction: Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results: Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion: tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion: More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.

16.
Front Hum Neurosci ; 18: 1427091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310792

RESUMEN

Introduction: In individuals with patellofemoral pain (PFP), addressing increased knee valgus during weight-bearing activities typically involves strengthening weak hip muscles. However, recent literature highlights the role of altered descending central control in abnormal movements associated with PFP. While transcranial direct current stimulation (tDCS) has demonstrated the capacity to enhance neuroplasticity, its application targeting the corticomotor function of gluteal muscles in PFP remains unexplored. This study aimed to investigate the effects of combining bimodal tDCS with exercise on frontal plane kinematics in individuals with PFP. The hypothesis was that bimodal tDCS, specifically targeting the corticomotor function of the gluteal muscles, would augment the effectiveness of exercise interventions in improving frontal plane kinematics compared to sham stimulation. Methods: Ten participants with PFP participated in two sessions involving either bimodal tDCS or sham stimulation, concurrently with hip strengthening exercises. Weight-bearing tasks, including single leg squat, single leg landing, single leg hopping, forward step-down, and lateral step-down, were performed and recorded before and after each session. Pain visual analog scale (VAS) scores were also documented. A one-way ANOVA with repeated measures was employed to compare kinematics, while a Friedman test was used to compare VAS across the three conditions (pre-test, post-tDCS, and post-Sham). Results: We observed no significant differences in trunk lean angle, hip and knee frontal plane projection angles, or dynamic valgus index among the three conditions during the five weight-bearing tasks. VAS scores did not differ across the three conditions. Discussion and conclusion: A single session of tDCS did not demonstrate immediate efficacy in enhancing frontal plane kinematics or relieving pain in individuals with PFP. Considering observed positive outcomes in other neurological and orthopedic populations with multi-session tDCS applications, suggesting potential cumulative effects, further research is essential to explore the effects of multi-session tDCS on weight-bearing movement and underlying neurophysiology in individuals with PFP.

17.
J Med Ultrasound ; 32(3): 233-237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310866

RESUMEN

Background: Transcranial grayscale neurosonography (NSG) and Doppler studies have major role in diagnosing neonate intracranial pathologies. The aim of the study is to evaluate the role of NSG and Doppler studies in correlation with clinical hypotonia and seizures in preterm neonates and high-risk term neonates. The prevalence of intracranial pathology is the second aim of this study. Methods: The present cross-sectional study was done in a tertiary care teaching hospital for 2 years. The study population of 120 cases comprised two groups: one group of 60 preterm neonates and the other of 60 high-risk term neonates with a history of well-defined episode of fetal distress. The NSG and Doppler findings (resistance index ≤0.62 is the optimum cutoff point for diagnosing perinatal asphyxia) are recorded. The sensitivity and specificity values for the NSG study alone, the Doppler study alone, and the combined NSG and Doppler studies are calculated. Results: The majority (46%) of preterm neonates had presented with germinal matrix hemorrhage, whereas a majority (46%) of high-risk term neonates had presented with periventricular and subcortical cysts. Comparison of the sensitivity of NSG versus Doppler versus combined NSG and Doppler in evaluating hypotonia and seizures in preterm (P = 0.0442) and high-risk term neonates (P = 0.0399) was significant. Conclusion: NSG combined with the Doppler study has significantly higher sensitivity than NSG alone in both groups. The specificity of the Doppler study is also high in both groups. Thus, it is strongly recommended to include Doppler during every NSG study to increase the detection rate.

18.
Res Sq ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39281864

RESUMEN

Background: In individuals with chronic stroke and hemiparesis, noninvasive brain stimulation (NIBS) may be used as an adjunct to therapy for improving motor recovery. Specific states of movement during motor recovery are more responsive to brain stimulation than others, thus a system that could auto-detect movement state would be useful in correctly identifying the most effective stimulation periods. The aim of this study was to compare the performance of different machine learning models in classifying movement periods during EEG recordings of hemiparetic individuals receiving noninvasive brain stimulation. We hypothesized that transcranial direct current stimulation, a form of NIBS, would modulate brain recordings correlating with movement state and improve classification accuracies above those receiving sham stimulation. Methods: Electroencephalogram data were obtained from 10 participants with chronic stroke and 11 healthy individuals performing a motor task while undergoing transcranial direct current stimulation. Eight traditional machine learning algorithms and five ensemble methods were used to classify two movement states (a hold posture and an arm reaching movement) before, during and after stimulation. To minimize compute times, preprocessing and feature extraction were limited to z-score normalization and power binning into five frequency bands (delta through gamma). Results: Classification of disease state produced significantly higher accuracies in the stimulation (versus sham) group at 78.9% (versus 55.6%, p < 0.000002). We observed significantly higher accuracies when classifying stimulation state in the chronic stroke group (77.6%) relative to healthy controls (64.1%, p < 0.0095). In the chronic stroke cohort, classification of hold versus reach was highest during the stimulation period (75.2%) as opposed to the pre- and post-stimulation periods. Linear discriminant analysis, logistic regression, and decision tree algorithms classified movement state most accurately in participants with chronic stroke during the stimulation period (76.1%). For the ensemble methods, the highest classification accuracy for hold versus reach was achieved using low gamma frequency (30-50 Hz) as a feature (74.5%), although this result did not achieve statistical significance. Conclusions: Machine learning algorithms demonstrated sufficiently high movement state classification accuracy in participants with chronic stroke performing functional tasks during noninvasive brain stimulation. tDCS improved disease state and movement state classification in participants with chronic stroke.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39293504

RESUMEN

Transcranial magnetic stimulation (TMS) is a safe non-invasive treatment technique. We systematically reviewed randomised controlled trials (RCTs) applying TMS in obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) to analyse its therapeutic benefits and explore the relationship between cortical target and psychopathophysiology. We included 47 randomised controlled trials (35 for OCD) and found a 22.7 % symptom improvement for OCD and 29.4 % for PTSD. Eight cortical targets were investigated for OCD and four for PTSD, yielding similar results. Bilateral dlPFC-TMS exhibited the greatest symptom change (32.3 % for OCD, N = 4 studies; 35.7 % for PTSD, N = 1 studies), followed by right dlPFC-TMS (24.4 % for OCD, N = 8; 26.7 % for PTSD, N = 10), and left dlPFC-TMS (22.9 % for OCD, N = 6; 23.1 % for PTSD, N = 1). mPFC-TMS showed promising results, although evidence is limited (N = 2 studies each for OCD and PTSD) and findings for PTSD were conflicting. Despite clinical improvement, reviewed reports lacked a consistent and solid rationale for cortical target selection, revealing a gap in TMS research that complicates the interpretation of findings and hinders TMS development and optimisation. Future research should adopt a hypothesis-driven approach rather than relying solely on correlations from imaging studies, integrating neurobiological processes with affective, behavioural, and cognitive states, thereby doing justice to the complexity of human experience and mental illness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA