Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 182: 113945, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35905703

RESUMEN

Rhodamine water tracer (RWT) released during the 2021 Tracer Release Experiment in the St. Lawrence Estuary provides a proxy for the water-soluble fractions of contaminant spills. Measurements of total and size-resolved aerosols were taken onboard a research vessel throughout the experiment. Size-resolved aerosol measurements show airborne transmission of water-soluble RWT in a bimodal distribution peaking at 5.2 µm and 0.9 µm. Highest aerosol RWT (30.5 pg m-3) was observed in the 12-hour daytime period following the first dye release (Sept. 5), while the lowest (8.8 pg m-3) was observed in the subsequent nighttime sample. Available wind and RWT patch information were used to identify factors contributing to the factor-of-three variation in aerosol RWT concentrations. Negligible correlations were found between aerosol RWT and wind speed and sample time-of-day. Wind direction is isolated as the key variable for consideration in identifying the impact of contaminant spills on coastal and inland communities.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Agua , Viento
2.
PeerJ ; 9: e11358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164231

RESUMEN

Each year, over one hundred million people become ill and tens of thousands die from exposure to viruses and bacteria from sewage transported to the ocean by rivers, estuaries, stormwater, and other coastal discharges. Water activities and seafood consumption have been emphasized as the major exposure pathways to coastal water pollution. In contrast, relatively little is known about the potential for airborne exposure to pollutants and pathogens from contaminated seawater. The Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) study was a large-scale experiment designed to investigate the transport pathways of water pollution along the coast by releasing dye into the surfzone in Imperial Beach, CA. Additionally, we leveraged this ocean-focused study to investigate potential airborne transmission of coastal water pollution by collecting complementary air samples along the coast and inland. Aerial measurements tracked sea surface dye concentrations along 5+ km of coast at 2 m × 2 m resolution. Dye was detected in the air over land for the first 2 days during two of the three dye releases, as far as 668 m inland and 720 m downwind of the ocean. These coordinated water/air measurements, comparing dye concentrations in the air and upwind source waters, provide insights into the factors that lead to the water-to-air transfer of pollutants. These findings show that coastal water pollution can reach people through an airborne pathway and this needs to be taken into account when assessing the full impact of coastal ocean pollution on public health. This study sets the stage for further studies to determine the details and importance of airborne exposure to sewage-based pathogens and toxins in order to fully assess the impact of coastal pollution on public health.

3.
Pest Manag Sci ; 77(10): 4447-4452, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34009730

RESUMEN

BACKGROUND: Mesocosm experiments were conducted to evaluate the effect of floating plant density on over-the-top spray solution loss to the column using a tracer dye. Experiments quantified in-water rhodamine water tracer (RWT) dye concentration after foliar treatment at 935 L ha-1 to waterhyacinth [Eichhornia crassipes (Mart.) Solms], waterlettuce (Pistia stratiotes L.) and giant salvinia (Salvinia molesta D.S. Mitchell) at 0, 25, 50 and 100% area covered (PAC). RESULTS: As expected, spray loss to the water surface decreased with increasing plant density in all species. However, each species exhibited an unique relationship between density and percentage spray loss. The plant material required to result in 50% spray loss (ED50 ) was 32, 62 and 55 PAC for waterhyacinth, waterlettuce and giant salvinia, respectively. Greater ED50 estimates in waterlettuce and giant salvinia were attributed to plant architecture and leaf orientation compared to waterhyacinth, which grows more vertically and has a greater overall surface area to intercept and retain spray solution. However, when treated at 100 PAC, waterhyacinth and waterlettuce resulted in 20-25% spray loss, whereas giant salvinia resulted in only 10% loss. Consequently, giant salvinia exhibited a near 1:1 relationship between spray loss and PAC (slope = -0.93). CONCLUSION: These data suggest that potential herbicide spray loss, as affected by plant density, is largely species-specific and dependent on leaf morphology and plant architecture. Further research will confirm these findings under field conditions as well as to identify other parameters that might affect spray loss when treating floating and emergent plants. © 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Araceae , Eichhornia , Herbicidas , Tracheophyta , Contaminantes Químicos del Agua , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis
4.
Pest Manag Sci ; 77(9): 4192-4199, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33942978

RESUMEN

Tracer dyes are often used as surrogates to characterize pesticide spray drift and it is assumed that they accurately reflect analytical measurement of active ingredients; however, the validity of this assumption remains inconclusive. Consequently, the influence of measurement technique on the magnitude of deposition of spray drift was investigated using spray drift samples evaluated by traditional analytical techniques (HPLC-MS/MS) and fluorimetry (1,3,6,8-pyrene-tetra sulfonic acid tetrasodium salt dye tracer). The experiment was conducted in a low-speed wind tunnel under controlled meteorological conditions. The herbicide mesotrione was sprayed through three spray air induction nozzles (anvil deflector flat fan TTI11004; flat fan AI11004; flat fan AIXR11003). Spray drift deposition samples were collected using stainless steel discs pairs placed side by side in the center of the wind tunnel at distances of 5, 10, 20, 30, and 40 ft (1.5, 3.1, 6.1, 9.1, and 12.2 m) from the spray nozzle. The analytical technique determined pesticide concentration on one disc per pair, and the other was evaluated by fluorimetry. The experimental results, analyzed using the linear split-split plot model, revealed that median deposition concentrations were 15% higher using the tracer dye fluorescence method relative to the analytical method, potentially due in part to procedural recovery inefficiencies of the analytical method (the mean overall procedural recovery result and RSD was 87% ± 6.4% (n = 12). This relationship was consistent and held true for the three nozzle types at all distances within the wind tunnel. © 2021 Society of Chemical Industry.


Asunto(s)
Agricultura , Plaguicidas , Fluorometría , Tamaño de la Partícula , Plaguicidas/análisis , Espectrometría de Masas en Tándem
5.
Int J Hyg Environ Health ; 234: 113734, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33799075

RESUMEN

BACKGROUND: Occupational exposure to agrochemicals, some of which are known or suspected carcinogens, is a major health hazard for subsistence agricultural workers and their families. These impacts are more prevalent in low-and-middle income countries (LMIC) due to weak regulations, lack of awareness of the risks of contamination, predominant use of handheld backpack style spraying equipment, general lack of personal protective equipment (PPE), and low literacy about proper agrochemical application techniques. Reducing exposure to agrochemicals was identified as a paramount concern by rural Hondurans working with a community-engaged research initiative. Fluorescent tracer dyes have been described as a means of visualizing and quantifying dermal exposure to agricultural chemicals, and exposure models adapted for LMIC have been developed previously. Tracer dyes have also been used in educational simulations to promote pesticide safety. However, studies evaluating the effectiveness of these educational dye interventions in reducing future exposure have been lacking. AIM: To evaluate whether observing one's own chemical contamination after applying agrochemicals changed the amount of occupational dermal exposure during a subsequent chemical application. METHODS: We employed a multi-modal community intervention in a rural village in Honduras that incorporated chemical safety education and use of a fluorescent tracer dye during pesticide application on two consecutive occasions, and compared dermal exposure between the intervention group (previous dye experience and safety education, n = 6) and the control group (safety education only, n = 7). RESULTS: Mean total visual score (TVS) of the tracer dye, which accounts for both extent and intensity of whole-body contamination, was lower among those who had previously experienced the dye intervention (mean TVS = 41.3) than among participants who were dye-naïve (mean TVS = 78.4), with a difference between means of -37.10 (95% CI [-66.26, -7.95], p = 0.02). Stratifying by body part, contamination was significantly lower for the anterior left lower extremity and bilateral feet for the dye-experienced group vs. dye-naïve, with most other segments showing a trend toward decreased contamination as well. CONCLUSION: Participants who had previously experienced the dye intervention were significantly less contaminated than the dye-naïve control group during a subsequent spraying event. The findings of this small pilot study suggest that a multi-modal, community-based approach that utilizes fluorescence-augmented contamination for individualized learning (FACIL) may be effective in reducing dermal exposure to carcinogenic agrochemicals among subsistence farmers in Honduras and other LMIC.


Asunto(s)
Exposición Profesional , Plaguicidas , Agricultura , Agroquímicos , Carcinógenos , Agricultores , Colorantes Fluorescentes , Honduras , Humanos , Exposición Profesional/análisis , Plaguicidas/análisis , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA