Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34533188

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Inositol , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/genética
2.
Curr Opin Endocr Metab Res ; 16: 102-112, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33748531

RESUMEN

Alterations in signalling due to bidirectional transactivation of G protein-coupled receptor (GPCRs) and receptor tyrosine kinases (RTKs) are well established. Transactivation significantly diversifies signalling networks within a cell and has been implicated in promoting both advantageous and disadvantageous physiological and pathophysiological outcomes, making the GPCR/RTK interactions attractive new targets for drug discovery programmes. Transactivation has been observed for a plethora of receptor pairings in multiple cell types; however, the precise molecular mechanisms and signalling effectors involved can vary with receptor pairings and cell type. This short review will discuss the recent applications of proximity-based assays, such as resonance energy transfer and fluorescence-based imaging in investigating the dynamics of GPCR/RTK complex formation, subsequent effector protein recruitment and the cellular locations of complexes in living cells.

3.
Membranes (Basel) ; 5(4): 702-21, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26610279

RESUMEN

Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of DFCS ~ 3 um2 * s-1 and DSPT ~ 2 um2 * s-1, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: D sup or approximatively 1um2 * s-1 for FCS and D inf or approximatively 5 um2 s-1 for SPT (with standard imaging conditions). In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA