Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Sci Rep ; 14(1): 21362, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266588

RESUMEN

The gut microbiome of worms from composting facilities potentially harbors organisms that are beneficial to plant growth and development. In this experiment, we sought to examine the potential impacts of rhizosphere microbiomes derived from Eisenia fetida worm castings (i.e. vermicompost) on tomato (Solanum lycopersicum, L.) plant growth and physiology. Our experiment consisted of a greenhouse trial lasting 17 weeks total in which tomato plants were grown with one of three inoculant treatments: a microbial inoculant created from vermicompost (V), a microbial inoculant created from sterilized vermicompost (SV), and a no-compost control inoculant (C). We hypothesized that living microbiomes from the vermicompost inoculant treatment would enhance host plant growth and gene expression profiles compared to plants grown in sterile and control treatments. Our data showed that bacterial community composition was significantly altered in tomato rhizospheres, but fungal community composition was highly variable in each treatment. Plant phenotypes that were significantly enhanced in the vermicompost and sterile vermicompost treatments, compared to the control, included aboveground biomass and foliar δ15N nitrogen. RNA sequencing revealed distinct gene expression changes in the vermicompost treatment, including upregulation of nutrient transporter genes such as Solyc06g074995 (high affinity nitrate transporter), which exhibited a 250.2-fold increase in expression in the vermicompost treatment compared to both the sterile vermicompost and control treatments. The plant transcriptome data suggest that rhizosphere microbiomes derived from vermicompost can influence tomato gene expression and growth-related regulatory pathways, which highlights the value of RNA sequencing in uncovering molecular responses in plant microbiome studies.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Microbiota/genética , Regulación de la Expresión Génica de las Plantas , Animales , Compostaje , Bacterias/genética , Bacterias/clasificación , Oligoquetos/microbiología , Oligoquetos/genética , Raíces de Plantas/microbiología , Raíces de Plantas/genética
2.
Food Chem X ; 23: 101748, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39280219

RESUMEN

This study investigated the impact of three different charged hydrocolloids, anionic polysaccharide (soluble soybean polysaccharide, SSPS), neutral polysaccharide (pullulan polysaccharide, PUL), and cationic polysaccharide (chitosan, CS), and their complexation on the stabilization efficiency of fermented tomato juice (FTJ). The effect of hydrocolloids on FTJ under different treatment conditions were comprehensively evaluated by determining the particle size distribution, zeta potential, rheological properties, Fourier transform infrared spectroscopy, surface tension, and LUMiSizer. The combined conditions suggest that PUL exhibits better storage stability than SSPS and CS when used individually. Compared with the use of the stabilizers, the combination of hydrocolloids had a greater impact on the storage stability of the FTJ, and the storage stability of the FTJ increased when 0.15% SSPS + 0.03% PUL + 0.15% CS was added. This study lays the groundwork for the development of stable fruit juice beverages.

3.
Food Chem ; 463(Pt 1): 141077, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243620

RESUMEN

Flavor is a crucial indicators of the quality of fermented tomato juice; however, there has been limited research in this area. Herein, headspace solid-phase microextraction gas chromatography-mass spectrometry was used to analyze the volatile metabolites at different stages during FTJ fermentation. 131 volatile organic compounds (VOCs) were identified, with alcohols, acids, and esters as the main compounds. The content of superoxide dismutase (SOD) and lycopene (LYC) had a positive correlation with methyl salicylate, ethyl acetate, and linalyl acetate. Subsequently, the storage stability of FTJ was evaluated at temperatures of 4 °C, 25 °C, and 37 °C over a period of 45 d, revealing that the quality of FTJ decreased with increasing storage temperature. The shelf life of FTJ under different storage conditions was determined using SOD activity and LYC content as quality indicators. The final shelf life was 47 d at 37 °C, 69 d at 25 °C, and 123 d at 4 °C.

4.
Microorganisms ; 12(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930633

RESUMEN

This study analyzed flower bud differentiation and fruiting stages to investigate how the structure of the plant endophytic microbial community in the roots of tomatoes changes with plant senescence. Based on high-throughput sequencing technology, the diversity and relative abundance of endophytic microorganisms (bacteria and fungi) in tomato stems at different growth stages were analyzed. At the same time, based on LEfSe analysis, the differences in endophytic microorganisms in tomato stems at different growth stages were studied. Based on PICRUSt2 function prediction and FUNGuild, we predicted the functions of endophytic bacterial and fungal communities in tomato stems at different growth stages to explore potential microbial functional traits. The results demonstrated that not only different unique bacterial genera but also unique fungal genera could be found colonizing tomato roots at different growth stages. In tomato seedlings, flower bud differentiation, and fruiting stages, the functions of colonizing endophytes in tomato roots could primarily contribute to the promotion of plant growth, stress resistance, and improvement in nutrient cycling, respectively. These results also suggest that different functional endophytes colonize tomato roots at different growth stages.

5.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831411

RESUMEN

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Asunto(s)
Glicina , Fósforo , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Glicina/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Fósforo/metabolismo , Fósforo/deficiencia , Deficiencias de Hierro , Hierro/metabolismo , Transporte Biológico , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo
6.
Plant Cell Environ ; 47(8): 3227-3240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738504

RESUMEN

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.


Asunto(s)
Herbivoria , Nitrógeno , Hojas de la Planta , Solanum lycopersicum , Spodoptera , Compuestos Orgánicos Volátiles , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Solanum lycopersicum/parasitología , Animales , Nitrógeno/metabolismo , Spodoptera/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Defensa de la Planta contra la Herbivoria , Volatilización , Larva/fisiología
7.
Plants (Basel) ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732492

RESUMEN

Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.

8.
J Exp Bot ; 75(13): 4093-4110, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551810

RESUMEN

Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions for 7 d post-inoculation, using a reconstructed metabolic model constrained by a large and consistent metabolic dataset acquired under four different N supplies. An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the tricarboxylic acid cycle, and amino acid and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.


Asunto(s)
Botrytis , Nitrógeno , Enfermedades de las Plantas , Tallos de la Planta , Solanum lycopersicum , Botrytis/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Nitrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Modelos Biológicos , Análisis de Flujos Metabólicos
9.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339150

RESUMEN

As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.


Asunto(s)
Etilenos , Solanum lycopersicum , Carotenoides/metabolismo , Clorofila/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Luciferasas/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/metabolismo
10.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069320

RESUMEN

DC1 (Divergent C1) domain proteins are a new class of proteins that have been discovered in recent years, which play an important role in plant growth, development, and stress response. In order to better study the distribution and function of DC1 domain proteins in tomatoes, a genome-wide identification was conducted. It was found that there are twenty-one DC1 domain protein genes distributed on nine chromosomes of tomatoes, named SlCHP1-21. Phylogenetic analysis shows that twenty-one SlCHP genes are divided into six subfamilies. Most of the SlCHP genes in tomatoes have no or very short introns. All SlCHP proteins, with the exception of SlCHP8 and SlCHP17, contain variable amounts of C1 domain. Analysis of the SlCHP gene promoter sequence revealed multiple cis-elements responsive to plant stress. qRT-CR analysis showed that most members of SlCHP gene expressed in the roots. The SlCHP11, 13, 16, 17, and SlCHP20 genes showed specific responses to high temperature, low temperature, salt, and drought stress. In addition, the subcellular localization and interaction proteins of SlCHP were analyzed and predicted. Together, these results provides a theoretical basis for further exploration of the function and mechanism of the SlCHP gene in tomatoes.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
11.
Plants (Basel) ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765505

RESUMEN

Tomato (Solanum lycopersicum) fruits are derived from fertilized ovaries formed during flower development. Thus, fruit morphology is tightly linked to carpel number and identity. The SUPERMAN (SUP) gene is a key transcription repressor to define the stamen-carpel boundary and to control floral meristem determinacy. Despite SUP functions having been characterized in a few plant species, its functions have not yet been explored in tomato. In this study, we identified and characterized a fascinated and multi-locule fruit (fmf) mutant in Solanum pimpinellifolium background harboring a nonsense mutation in the coding sequence of a zinc finger gene orthologous to SUP. The fmf mutant produces supersex flowers containing increased numbers of stamens and carpels and sets malformed seedless fruits with complete flowers frequently formed on the distal end. fmf alleles in cultivated tomato background created by CRISPR-Cas9 showed similar floral and fruit phenotypes. Our results provide insight into the functional conservation and diversification of SUP members in different species. We also speculate the FMF gene may be a potential target for yield improvement in tomato by genetic engineering.

12.
Plant Physiol Biochem ; 201: 107920, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37527607

RESUMEN

Pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP) have been found to accumulate during the ripening of multiple types of fruits; however, the function and mechanism of pipecolate pathway in fruits remain unclear. Here study was conducted on fruits produced by the model plant tomato, wherein the NHP biosynthesis-related genes, Slald1 and Slfmo1, were mutated. The results showed that the fruits of both the Slald1 and the Slfmo1 mutants exhibited a delayed onset of ripening, decreased fruit size, nutrition and flavor. Exogenous treatment with Pip and NHP promoted fruit ripening and improved fruit quality. Transcriptomic analysis combined with weighted gene co-expression network analysis revealed that the genes involved in the biosynthesis of amino acids, carbon metabolism, photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and plant hormone signal transduction were affected by SlFMO1 gene mutation. Transcription factor prediction analysis revealed that the NAC and AP2/ERF-ERF family members are notably involved in the regulation pathway. Overall, our results suggest that the pipecolate biosynthesis pathway is involved in the simultaneous regulation of fruit ripening and quality and indicate that a regulatory mechanism at the transcriptional level exists. However, possible roles of endogenously synthesized Pip and NHP in these processes remain to be determined. The biosynthesis pathway genes SlALD1 and SlFMO1 may be potential breeding targets for promoting fruit ripening and improving fruit quality with concomitant yield increases.


Asunto(s)
Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Frutas/metabolismo , Ácidos Pipecólicos/metabolismo , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
13.
Plants (Basel) ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447072

RESUMEN

Magnesium (Mg2+) is the most abundant divalent ion in plants, participating in numerous metabolic processes in growth and development. CorA/MRS2/ALR type Mg2+ transporters are essential for maintaining Mg2+ homeostasis in plants. However, the candidate protein and its potential functions in the tomato plant have not been fully understood. In this study, we identified seven MGT genes (SlMRS2) in tomato based on sequence similarity, domain analysis, conserved motif identification, and structure prediction. Two SlMRS2 genes were analyzed in the bacterial strain MM281, and a functional complementary assay demonstrated their high-affinity transport of Mg2+. Quantitative real-time PCR analysis revealed that the expressions of these Mg2+ transporters were down-regulated in leaves under Mg2+ limitation, with a greater impact on lower and middle leaves compared to young leaves. Conversely, under Mg2+ toxicity, several genes were up-regulated in leaves with a circadian rhythm. Our findings indicate that members of the SlMRS2 family function as Mg2+ transporters and lay the groundwork for further analysis of their distinct functions in tomato.

14.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37511542

RESUMEN

PLAC8 is a cysteine-rich protein that serves as a central mediator of tumor evolution in mammals. PLAC8 motif-containing proteins widely distribute in fungi, algae, higher plants and animals that have been described to be implicated in fruit size, cell number and the transport of heavy metals such as cadmium or zinc. In tomatoes, FW2.2 is a PLAC8 motif-containing gene that negatively controls fruit size by regulating cell division and expansion in the carpel ovary during fruit development. However, despite FW2.2, other FWL (FW2.2-Like) genes in tomatoes have not been investigated. In this study, we identified the 21 SlFWL genes, including FW2.2, examined their expression profiles under various abiotic adversity-related conditions. The SlFWL gene structures and motif compositions are conserved, indicating that tomato SlFWL genes may have similar roles. Cis-acting element analysis revealed that the SlFWL genes may participate in light and abiotic stress responses, and they also interacted with a variety of phytohormone-responsive proteins and plant development elements. Phylogenetic analyses were performed on five additional plant species, including Arabidopsis, pepper, soybean, rice and maize, these genes were classified into five subfamilies. Based on the results of collinearity analyses, the SlFWL genes have a tighter homologous evolutionary relationship with soybean, and these orthologous FWL gene pairs might have the common ancestor. Expression profiling of SlFWL genes show that they were all responsive to abiotic stresses, each subgroup of genes exhibited a different expression trend. Our findings provide a strong foundation for investigating the function and abiotic stress responses of the SlFWL family genes.


Asunto(s)
Solanum lycopersicum , Animales , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Sequías , Filogenia , Calor , Estudio de Asociación del Genoma Completo , Plantas/metabolismo , Cloruro de Sodio/metabolismo , Familia de Multigenes , Cloruro de Sodio Dietético/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo
15.
Plant J ; 115(6): 1746-1757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37326247

RESUMEN

3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Botrytis/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Environ Sci Pollut Res Int ; 30(30): 75894-75907, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37227631

RESUMEN

To investigate whether elevated CO2 (eCO2) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500 mg·kg-1) and CO2 concentrations (400 and 800 µmol·mol-1) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical properties, and rhizosphere soil microbial community composition were analyzed. In 500 mg·kg-1 nano-ZnO-treated soils, root Zn content was 58% higher, while total dry weight (TDW) was 39.8% lower under eCO2 than under atmospheric CO2 (aCO2). Compared with the control, the interaction of eCO2 and 300 mg·kg-1 nano-ZnO decreased and increased bacterial and fungal alpha diversities, respectively, which was caused by the direct effect of nano-ZnO (r = - 1.47, p < 0.01). Specifically, the bacterial OTUs decreased from 2691 to 2494, while fungal OTUs increased from 266 to 307, when 800-300 was compared with 400-0 treatment. eCO2 enhanced the influence of nano-ZnO on bacterial community structure, while only eCO2 significantly shaped fungal composition. In detail, nano-ZnO explained 32.4% of the bacterial variations, while the interaction of CO2 and nano-ZnO explained 47.9%. Betaproteobacteria, which are involved in C, N, and S cycling, and r-strategists, such as Alpha- and Gammaproteobacteria and Bacteroidetes, significantly decreased under 300 mg·kg-1 nano-ZnO, confirming reduced root secretions. In contrast, Alpha- and Gammaproteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were enriched in 300 mg·kg-1 nano-ZnO under eCO2, suggesting greater adaptation to both nano-ZnO and eCO2. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) analysis demonstrated that bacterial functionality was unchanged under short-term nano-ZnO and eCO2 exposure. In conclusion, nano-ZnO significantly affected microbial diversities and the bacterial composition, and eCO2 intensified the damage of nano-ZnO, while the bacterial functionality was not changed in this study.


Asunto(s)
Gammaproteobacteria , Solanum lycopersicum , Suelo , Rizosfera , Dióxido de Carbono , Filogenia , Bacterias , Bacteroidetes , Microbiología del Suelo
17.
Front Microbiol ; 14: 1140484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082173

RESUMEN

A multifunctional, Gram-stain-negative, aerobic, motile by flagella, short-rod shaped bacteria, designated strain RG36T was isolated from roots of marigold plant (Tagetes patula) sampled at Dongguk University, Republic of Korea. A 16S rRNA sequences indicated that the closest phylogenetic neighbors were Paraburkholderia acidiphila 7Q-K02T (99.0%) and Paraburkholderia sacchari IPT101T (98.9%) of the family Burkholderiaceae. The draft genome size was 8.52 Mb (63.7% GC). The genome contained 7,381 coding sequences. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of strain RG36T with its most closely related species were only 83.1-88.7 and 27.6-36.7%, respectively. Strain RG36T contained Q-8 as the major respiratory quinone and its main fatty acids (>10%) were C16:0, C17:0 cyclo, C19:0 cyclo ω8c, and summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c). Strain RG36T accumulates polyhydroxybutyrates (PHB) and exhibits multiple plant growth-promoting properties including production of indole-3-acetic acid (IAA), siderophores, protease, phosphate solubilization, and harboring gene clusters for its multifunctional properties. A pot experiment was conducted to evaluate the effect of PGPR on the growth of Solanum lycopersicum L. (Tomato). Result also confirmed the ability of strain RG36T to promote tomato plant growth, especially it increases the yield of tomatoes. Structural assessment of the bioplastic by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and GC-MS spectroscopy, which confirmed the structure of the polymer as PHB. Our study revealed the potential of strain RG36T to promote the growth of tomato plant and fruit yield by stimulating the various phytohormones, which could be use as bio-fertilizers to reduce the use of chemical fertilizers and promotes sustainable agricultural production. The phenotypic, chemotaxonomic and phylogenetic data, and genome analysis showed that strain RG36T represents a novel species of the genus Paraburkholderia, for which the name Paraburkholderia tagetis sp. nov. is proposed. The type strain is RG36T (=KACC 22685T = TBRC 15696T).

18.
Plant Mol Biol ; 113(6): 353-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37079121

RESUMEN

A large part of the production of tomato plants is grafted. Although it has recently been described that cell walls play an important role in tomato graft healing, the spatiotemporal dynamics of cell wall changes in this critical process remains largely unknown. The aim of this work was to immunolocalize changes in the major cell wall matrix components of autograft union tissues throughout the course of healing, from 1 to 20 days after grafting (DAG). Homogalacturonan was de novo synthetized and deposited in the cut edges, displaying the low methyl-esterified homogalacturonan a stronger labelling. Labelling of galactan side chains of rhamnogalacturonan increased until 8 DAG, although remarkably a set of cells at the graft union did not show labelling for this epitope. Changes in xylan immunolocalization were associated to the xylem vasculature development throughout, while those of xyloglucan revealed early synthesis at the cut edges. Arabinogalactan proteins increased up to 8 DAG and showed scion-rootstock asymmetry, with a higher extent in the scion. The combination of these changes appears to be related with the success of the autograft, specifically facilitating the adhesion phase between scion-rootstock tissues. This knowledge paves the way for improved grafting using methods that facilitate appropriate changes in the time and space dynamics of these cell wall compounds.


Asunto(s)
Solanum lycopersicum , Polímeros/metabolismo , Autoinjertos , Pared Celular/metabolismo
19.
Plant Cell Environ ; 46(6): 1921-1934, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891914

RESUMEN

Auxins are a class of phytohormones with roles involved in the establishment and maintenance of the arbuscular mycorrhizal symbiosis (AMS). Auxin response factors (ARFs) and Auxin/Indole-acetic acids (AUX/IAAs), as two transcription factors of the auxin signaling pathway, coregulate the transcription of auxin response genes. However, the interrelation and regulatory mechanism of ARFs and AUX/IAAs in regulating AMS are still unclear. In this study, we found that the content of auxin in tomato roots increased sharply and revealed the importance of the auxin signaling pathway in the early stage of AMS. Notably, SlARF6 was found to play a negative role in AMF colonization. Silencing SlARF6 significantly increased the expression of AM-marker genes, as well as AMF-induced phosphorus uptake. SlIAA23 could interact with SlARF6 in vivo and in vitro, and promoted the AMS and phosphorus uptake. Interestingly, SlARF6 and SlIAA23 played a contrary role in strigolactone (SL) synthesis and accumulation in AMF-colonized roots of tomato plants. SlARF6 could directly bind to the AuxRE motif of the SlCCD8 promoter and inhibited its transcription, however, this effect was attenuated by SlIAA23 through interaction with SlARF6. Our results suggest that SlIAA23-SlARF6 coregulated tomato-AMS via an SL-dependent pathway, thus affecting phosphorus uptake in tomato plants.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/fisiología , Solanum lycopersicum/genética , Simbiosis/genética , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo
20.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834789

RESUMEN

Tomato (Solanum lycopersicum Mill.) is one of the widely cultured vegetables under protected cultivation, in which insufficient light is one of the major factors that limit its growth, yield, and quality. Chlorophyll b (Chl b) is exclusively present in the light-harvesting complex (LHC) of photosystems, while its synthesis is strictly regulated in response to light conditions in order to control the antenna size. Chlorophyllide a oxygenase (CAO) is the sole enzyme that converts Chl a to Chl b for Chl b biosynthesis. Previous studies have shown that overexpressing CAO without the regulating domain (A domain) in Arabidopsis overproduced Chl b. However, the growth characteristics of the Chl b overproduced plants under different light environmental conditions are not well studied. Considering tomatoes are light-loving plants and sensitive to low light stress, this study aimed to uncover the growth character of tomatoes with enhanced production of Chl b. The A domain deleted Arabidopsis CAO fused with the FLAG tag (BCF) was overexpressed in tomatoes. The BCF overexpressed plants accumulated a significantly higher Chl b content, resulting in a significantly lower Chl a/b ratio than WT. Additionally, BCF plants possessed a lower maximal photochemical efficiency of photosystem II (Fv/Fm) and anthocyanin content than WT plants. The growth rate of BCF plants was significantly faster than WT plants under low-light (LL) conditions with light intensity at 50-70 µmol photons m-2 s-1, while BCF plants grew slower than WT plants under high-light (HL) conditions. Our results revealed that Chl b overproduced tomato plants could better adapt to LL conditions by absorbing more light for photosynthesis but adapt poorly to excess light conditions by accumulating more ROS and fewer anthocyanins. Enhanced production of Chl b is able to improve the growth rate of tomatoes that are grown under LL conditions, indicating the prospect of employing Chl b overproduced light-loving crops and ornamental plants for protected or indoor cultivation.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Antocianinas , Clorofila , Fotosíntesis/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Oxigenasas/metabolismo , Aclimatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA