Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Syst Biol ; 20(5): 506-520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491213

RESUMEN

Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.


Asunto(s)
Codón , Metabolismo Energético , Estabilidad del ARN , ARN Mensajero , Humanos , Metabolismo Energético/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón/genética , Uso de Codones , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica
2.
Front Physiol ; 14: 1271149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37916217

RESUMEN

Lipoprotein lipase (LPL) is responsible for the intravascular catabolism of triglyceride-rich lipoproteins and plays a central role in whole-body energy balance and lipid homeostasis. As such, LPL is subject to tissue-specific regulation in different physiological conditions, but the mechanisms of this regulation remain incompletely characterized. Previous work revealed that LPL comprises a set of proteoforms with different isoelectric points, but their regulation and functional significance have not been studied thus far. Here we studied the distribution of LPL proteoforms in different rat tissues and their regulation under physiological conditions. First, analysis by two-dimensional electrophoresis and Western blot showed different patterns of LPL proteoforms (i.e., different pI or relative abundance of LPL proteoforms) in different rat tissues under basal conditions, which could be related to the tissue-specific regulation of the enzyme. Next, the comparison of LPL proteoforms from heart and brown adipose tissue between adults and 15-day-old rat pups, two conditions with minimal regulation of LPL in these tissues, yielded virtually the same tissue-specific patterns of LPL proteoforms. In contrast, the pronounced downregulation of LPL activity observed in white adipose tissue during fasting is accompanied by a prominent reconfiguration of the LPL proteoform pattern. Furthermore, refeeding reverts this downregulation of LPL activity and restores the pattern of LPL proteoforms in this tissue. Importantly, this reversible proteoform-specific regulation during fasting and refeeding indicates that LPL proteoforms are functionally diverse. Further investigation of potential differences in the functional properties of LPL proteoforms showed that all proteoforms exhibit lipolytic activity and have similar heparin-binding affinity, although other functional aspects remain to be investigated. Overall, this study demonstrates the ubiquity, differential distribution and specific regulation of LPL proteoforms in rat tissues and underscores the need to consider the existence of LPL proteoforms for a complete understanding of LPL regulation under physiological conditions.

3.
JACC Basic Transl Sci ; 8(1): 55-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777173

RESUMEN

Using the Cre-loxP system, we generated the first mouse model in which estrogen receptor-α non-nuclear signaling was inactivated in endothelial cells. Estrogen protection against mechanical vascular injury was impaired in this model. This result indicates the pivotal role of endothelial estrogen receptor-α non-nuclear signaling in the vasculoprotective effects of estrogen.

4.
J Exp Bot ; 74(5): 1517-1531, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36546359

RESUMEN

The R2R3-MYB transcription factor FveMYB10 is a major regulator of anthocyanin pigmentation in the red fruits of strawberry. fvemyb10 loss-of-function mutants form yellow fruits but still accumulate purple-colored anthocyanins in the petioles, suggesting that anthocyanin biosynthesis is under distinct regulation in fruits and petioles. From chemical mutagenesis in the diploid wild strawberry Fragaria vesca, we identified a green petioles (gp)-1 mutant that lacks anthocyanins in petioles. Using mapping-by-sequencing and transient functional assays, we confirmed that the causative mutation resides in a FveMYB10-Like (FveMYB10L) gene and that FveMYB10 and FveMYB10L function independently in the fruit and petiole, respectively. In addition to their tissue-specific regulation, FveMYB10 and FveMYB10L respond differently to changes in light quality, produce distinct anthocyanin compositions, and preferentially activate different downstream anthocyanin biosynthesis genes in their respective tissues. This work identifies a new regulator of anthocyanin synthesis and demonstrates that two paralogous MYB genes with specialized functions enable tissue-specific regulation of anthocyanin biosynthesis in fruit and petiole tissues.


Asunto(s)
Fragaria , Fragaria/genética , Fragaria/metabolismo , Antocianinas , Frutas/genética , Frutas/metabolismo , Diploidia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Genomics ; 22(1): 414, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090325

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are an abundant class of noncoding RNAs present in all eukaryotes and best known for their involvement in ribosome biogenesis. In mammalian genomes, many snoRNAs exist in multiple copies, resulting from recombination and retrotransposition from an ancestral snoRNA. To gain insight into snoRNA copy regulation, we used Rfam classification and normal human tissue expression datasets generated using low structure bias RNA-seq to characterize snoRNA families. RESULTS: We found that although box H/ACA families are on average larger than box C/D families, the number of expressed members is similar for both types. Family members can cover a wide range of average abundance values, but importantly, expression variability of individual members of a family is preferred over the total variability of the family, especially for box H/ACA snoRNAs, suggesting that while members are likely differentially regulated, mechanisms exist to ensure uniformity of the total family abundance across tissues. Box C/D snoRNA family members are mostly embedded in the same host gene while box H/ACA family members tend to be encoded in more than one different host, supporting a model in which box C/D snoRNA duplication occurred mostly by cis recombination while box H/ACA snoRNA families have gained copy members through retrotransposition. And unexpectedly, snoRNAs encoded in the same host gene can be regulated independently, as some snoRNAs within the same family vary in abundance in a divergent way between tissues. CONCLUSIONS: SnoRNA copy regulation affects family sizes, genomic location of the members and controls simultaneously member and total family abundance to respond to the needs of individual tissues.


Asunto(s)
Genoma , ARN Nucleolar Pequeño , Animales , Composición Familiar , Genómica , Humanos , ARN Nucleolar Pequeño/genética
6.
Biol Pharm Bull ; 42(10): 1609-1619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31582649

RESUMEN

The vascular system forms the largest surface in our body, serving as a critical interface between blood circulation and our diverse organ/tissue environments. Thus, the vascular system performs a gatekeeper function for organ/tissue homeostasis and the body's adjustment to pathological challenges. The endothelium, as the most inner layer of the vasculature, regulates the tissue microenvironment, which is critical for development, hemostatic balance, inflammation, and angiogenesis, with a role as well in tumor malignancy and metastasis. These multitudinous functions are primarily mediated by organ/tissue-specifically differentiated endothelial cells, in which heterogeneity has long been recognized at the molecular and histological level. Based on these general principles of vascular-bed heterogeneity and characterization, this review largely covers landmark discoveries regarding organ/tissue microenvironment-governed endothelial cell phenotypic changes. These involve the physical features of continuous, discontinuous, fenestrated, and sinusoidal endothelial cells, in addition to the more specialized endothelial cell layers of the lymphatic system, glomerulus, tumors, and the blood brain barrier (BBB). Major signal pathways of endothelial specification are outlined, including Notch as a key factor of tip/stalk- and arterial-endothelial cell differentiation. We also denote the shear stress sensing machinery used to convey blood flow-mediated biophysical forces that are indispensable to maintaining inert and mature endothelial phenotypes. Since our circulatory system is among the most fundamental and emergent targets of study in pharmacology from the viewpoint of drug metabolism and delivery, a better molecular understanding of organ vasculature-bed heterogeneity may lead to better strategies for novel vascular-targeted treatments to fight against hitherto intractable diseases.


Asunto(s)
Células Endoteliales , Especificidad de Órganos , Animales , Enfermedad , Endotelio Vascular , Salud , Humanos
7.
Methods Mol Biol ; 1733: 87-92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29435925

RESUMEN

MiRNAs control gene expression via recognition of specific sequences in the 3' untranslated region of target genes, leading to mRNA degradation and consequently translational repression. The regulatory impact of miRNAs does not only depend on their expression levels, but also on their targets' mRNA configuration. Via alternative polyadenylation mRNA isoforms are created that may or may not contain the respective miRNA target sequence, turning the regulatory between these two on or off. In the following article, we describe our protocol on how to combine a bioinformatics evaluation of a potential miRNA-target gene interaction using the public web framework miRIAD with 5' rapid amplification of cDNA ends (5'-RACE) in order to explore differential gene regulation by miRNAs through alternative polyadenylation.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Poliadenilación , ARN Mensajero/genética , Regiones no Traducidas 3' , Silenciador del Gen , Humanos , Especificidad de Órganos/genética , Interferencia de ARN , Reproducibilidad de los Resultados
8.
Oncotarget ; 8(22): 36040-36053, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28415601

RESUMEN

GATA3 polymorphisms were reported to be significantly associated with susceptibility of pediatric B-lineage acute lymphoblastic leukemia (ALL), by impacting on GATA3 expression. We noticed that ALL-related GATA3 polymorphism located around in the tissue-specific enhancer, and significantly associated with GATA3 expression. Although the regulatory network of GATA3 has been well reported in T cells, the functional status of GATA3 is poorly understood in B-ALL. We thus conducted genome-wide gene expression association analyses to reveal expression associated genes and pathways in nine independent B-ALL patient cohorts. In B-ALL patients, 173 candidates were identified to be significantly associated with GATA3 expression, including some reported GATA3-related genes (e.g., ITM2A) and well-known tumor-related genes (e.g., STAT4). Some of the candidates exhibit tissue-specific and subtype-specific association with GATA3. Through overexpression and down-regulation of GATA3 in leukemia cell lines, several reported and novel GATA3 regulated genes were validated. Moreover, association of GATA3 expression and its targets can be impacted by SNPs (e.g., rs4894953), which locate in the potential GATA3 binding motif. Our findings suggest that GATA3 may be involved in multiple tumor-related pathways (e.g., STAT/JAK pathway) in B-ALL to impact leukemogenesis through epigenetic regulation.


Asunto(s)
Linfocitos B/patología , Factor de Transcripción GATA3/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Línea Celular Tumoral , Niño , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Epigénesis Genética , Factor de Transcripción GATA3/metabolismo , Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Factor de Transcripción STAT4/genética
9.
Genomics ; 109(2): 113-122, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28119109

RESUMEN

Signal peptides (SP) are cleavable N-terminal protein motifs used co-translationally for entry of nascent polypeptides into the secretory pathway. Their co-translational cleavage prevents their extensive post-translational regulation and flexibility in their usage is made possible by the control of their inclusion at a pre-translational level. To characterize this regulation on a transcriptome scale, we analyzed the level and mechanisms of inclusion of the 3298 most likely human SP-encoding genes, 47% of which alternatively express their SP. Analysis of RNA-seq data across different normal human tissues indicates that pre-translational regulation of the SP differs depending on tissue-coverage of the gene, with alternative SP genes more likely to be widely expressed than constitutive SP genes. SP inclusion represents a new metric to measure functional gene expression and its deregulation in disease. Our analysis supports the extensive use of pre-translational regulation of SP inclusion, with functional consequences and implications for biomarker discovery.


Asunto(s)
Regulación de la Expresión Génica , Señales de Clasificación de Proteína , ARN Mensajero/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Especificidad de Órganos , ARN Mensajero/genética , Análisis de Secuencia de ARN
10.
Adv Exp Med Biol ; 907: 229-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27256389

RESUMEN

Alternative pre-mRNA splicing serves as an elegant mechanism for generating transcriptomic and proteomic diversity between cell and tissue types. In this chapter, we highlight key concepts and outstanding goals in studies of tissue and cell-specific alternative splicing. We place particular emphasis on the use of C. elegans as a tractable model organism for in vivo studies of alternative splicing between tissues and also at single cell resolution. We describe our current understanding of tissue and cell-specific regulation in the animal, and emerging techniques that will allow for future mechanistic studies as well as systems level investigations of spatio-temporal splicing under laboratory conditions and in response to environmental stimuli.


Asunto(s)
Empalme Alternativo , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Regulación de la Expresión Génica/genética , Factores de Empalme de ARN/fisiología , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Animales , Evolución Biológica , Exones , Genes Reporteros , Humanos , Invertebrados/genética , Especificidad de Órganos , ARN/genética , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Helminto/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/fisiología , Especificidad de la Especie , Empalmosomas/metabolismo , Vertebrados/genética
11.
BMC Genomics ; 17: 472, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27342569

RESUMEN

BACKGROUND: Appropriate protein subcellular localization is essential for proper cellular function. Central to the regulation of protein localization are protein targeting motifs, stretches of amino acids serving as guides for protein entry in a specific cellular compartment. While the use of protein targeting motifs is modulated in a post-translational manner, mainly by protein conformational changes and post-translational modifications, the presence of these motifs in proteins can also be regulated in a pre-translational manner. Here, we investigate the extent of pre-translational regulation of the main signals controlling nucleo-cytoplasmic traffic: the nuclear localization signal (NLS) and the nuclear export signal (NES). RESULTS: Motif databases and manual curation of the literature allowed the identification of 175 experimentally validated NLSs and 120 experimentally validated NESs in human. Following mapping onto annotated transcripts, these motifs were found to be modular, most (73 % for NLS and 88 % for NES) being encoded entirely in only one exon. The presence of a majority of these motifs is regulated in an alternative manner at the transcript level (61 % for NLS and 72 % for NES) while the remaining motifs are present in all coding isoforms of their encoding gene. NLSs and NESs are pre-translationally regulated using four main mechanisms: alternative transcription/translation initiation, alternative translation termination, alternative splicing of the exon encoding the motif and frameshift, the first two being by far the most prevalent mechanisms. Quantitative analysis of the presence of these motifs using RNA-seq data indicates that inclusion of these motifs can be regulated in a tissue-specific and a combinatorial manner, can be altered in disease states in a directed way and that alternative inclusion of these motifs is often used by proteins with diverse interactors and roles in diverse pathways, such as kinases. CONCLUSIONS: The pre-translational regulation of the inclusion of protein targeting motifs is a prominent and tightly-regulated mechanism that adds another layer in the control of protein subcellular localization.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Señales de Localización Nuclear/genética , Proteínas/genética , Análisis de Secuencia de ARN/métodos , Empalme Alternativo , Secuencias de Aminoácidos , Animales , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , Señales de Exportación Nuclear , Isoformas de Proteínas/genética , Transporte de Proteínas , Proteínas/química , Proteínas/metabolismo
12.
Cell Mol Life Sci ; 73(4): 829-39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621669

RESUMEN

Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current understanding of light signaling pathways in flowering regulation, especially, in which tissue do photoreceptors regulate flowering in response to light quality and photoperiod. Since light signaling is also integrated into other flowering pathways, we also introduce recent progress on how photoreceptors are involved in tissue-specific thermosensation and the gibberellin pathway. Finally, we discuss the importance of cell-type-specific analyses for future plant studies.


Asunto(s)
Flores/crecimiento & desarrollo , Giberelinas/metabolismo , Fotoperiodo , Fitocromo/metabolismo , Desarrollo de la Planta , Plantas/metabolismo , Flores/metabolismo , Luz , Transducción de Señal
13.
Drug Metab Pharmacokinet ; 30(4): 269-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26210671

RESUMEN

UDP-glucuronosyltransferase (UGT) is a family of enzymes that catalyze the glucuronidation of various compounds, and thereby has an important role in metabolism and detoxification of a large number of xenobiotic and endogenous compounds. UGTs are present highly in the liver and small intestine, while several investigations on quantification of UGT mRNA reported that UGTs were also expressed in the brain. However, reported expression patterns of UGT isoforms in human brain were often incongruous with each other. In the present study, therefore, we investigated UGT mRNA expressions in brains of humanized UGT1 (hUGT1) mice. We found that among the human UGT1 members, UGT1A1, 1A3, and 1A6 were expressed in the brain. We further observed that nicotine (3 mg/kg) induced the expression of UGT1A3 mRNA in the brain, but not liver. While it was not statistically significant, the nicotine treatment resulted in an increase in the chenodeoxycholic acid glucuronide-formation activity in the brain microsomes. UGT1A3 is involved in metabolism of various antidepressants and non-steroidal antiinflammatory drugs, which exhibit their pharmacological effects in the brain. Therefore, nicotine-treated hUGT1 mice might be useful to investigate the role of brain UGT1A3 in the regulation of local levels of these drugs and their response.


Asunto(s)
Encéfalo/enzimología , Encéfalo/metabolismo , Glucuronosiltransferasa/metabolismo , Nicotina/metabolismo , Animales , Glucurónidos/metabolismo , Hígado/enzimología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Microsomas/enzimología , Microsomas/metabolismo , ARN Mensajero/metabolismo
14.
Biochem Pharmacol ; 87(4): 660-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24239897

RESUMEN

Human UDP-glucuronosyltransferase (UGT) 1A10 is not expressed in the liver; however, UGT1A10 is highly expressed in the intestine, contributing to presystemic first-pass metabolism. Earlier studies revealed that hepatocyte nuclear factor (HNF) 1α and Sp1, as well as an intestine-specific transcription factor, caudal type homeobox (Cdx) 2, are involved in the constitutive expression of UGT1A10. However, why UGT1A10 is not expressed in the liver, where HNF1α and Sp1 are abundantly expressed, is unknown. In this study, we sought to elucidate the mechanism, focusing on epigenetic regulation. Bisulfite sequence analysis revealed that the CpG-rich region (-264 to +117) around the UGT1A10 promoter was hypermethylated (89%) in hepatocytes, whereas the UGT1A10 promoter was hypomethylated (11%) in the epithelium of the small intestine. A luciferase assay revealed that the methylation of the UGT1A10 promoter by SssI methylase abrogated transactivity even with overexpressed Cdx2 and HNF1α. The UGT1A10 promoter was highly methylated (86%) in liver-derived HuH-7 cells, where UGT1A10 is not expressed. In contrast, the UGT1A10 promoter was hardly methylated (19%) in colon-derived LS180 cells, where UGT1A10 is expressed. Treatment with 5-aza-2'-deoxycitidine (5-Aza-dC), an inhibitor of DNA methylation, resulted in an increase in UGT1A10 expression only in HuH-7 cells. Moreover, overexpression of HNF1α and Cdx2 further increased UGT1A10 expression only in the presence of 5-Aza-dC. Collectively, we found that DNA hypermethylation would interfere with the binding of HNF1α and Cdx2, resulting in the defective expression of UGT1A10 in human liver. Thus, epigenetic regulation is one of the mechanisms that determine the tissue-specific expression of UGT1A10.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Enzimológica de la Expresión Génica , Glucuronosiltransferasa/biosíntesis , Glucuronosiltransferasa/genética , Adulto , Células CACO-2 , Femenino , Células HT29 , Células Hep G2 , Humanos , Persona de Mediana Edad , Unión Proteica/genética , Distribución Tisular/genética
15.
Genes Dev ; 27(21): 2380-96, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24145798

RESUMEN

More than half of human genes use alternative cleavage and polyadenylation (ApA) to generate mRNA transcripts that differ in the lengths of their 3' untranslated regions (UTRs), thus altering the post-transcriptional fate of the message and likely the protein output. The extent of 3' UTR variation across tissues and the functional role of ApA remain poorly understood. We developed a sequencing method called 3'-seq to quantitatively map the 3' ends of the transcriptome of diverse human tissues and isogenic transformation systems. We found that cell type-specific gene expression is accomplished by two complementary programs. Tissue-restricted genes tend to have single 3' UTRs, whereas a majority of ubiquitously transcribed genes generate multiple 3' UTRs. During transformation and differentiation, single-UTR genes change their mRNA abundance levels, while multi-UTR genes mostly change 3' UTR isoform ratios to achieve tissue specificity. However, both regulation programs target genes that function in the same pathways and processes that characterize the new cell type. Instead of finding global shifts in 3' UTR length during transformation and differentiation, we identify tissue-specific groups of multi-UTR genes that change their 3' UTR ratios; these changes in 3' UTR length are largely independent from changes in mRNA abundance. Finally, tissue-specific usage of ApA sites appears to be a mechanism for changing the landscape targetable by ubiquitously expressed microRNAs.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Poliadenilación , Regiones no Traducidas 3'/genética , Línea Celular , Línea Celular Tumoral , Transformación Celular Viral/fisiología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Herpesvirus Humano 4/fisiología , Humanos , Células MCF-7 , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Isoformas de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Univ. sci ; 17(2): 189-202, may.-ago. 2012. ilus, tab
Artículo en Español | LILACS | ID: lil-669336

RESUMEN

Los alcaloides bencilisoquinolínicos (ABI) son metabolitos especializados con una distribución filogenética antigua pero conservadatodavía en clados modernos. Varios de ellos, como la morfina, sanguinerina y berberina tienen importancia en la medicina moderna. Enesta revisión se analizan los aspectos más sobresalientes del estado actual de la biosíntesis de ABI. Se han realizado estudios que hanpermitido conocer la biosíntesis de 22 de estos metabolitos nitrogenados. En su formación participan 43 enzimas agrupadas en oxidoreductasas,transferasas y liasas, que en algunos casos representan ejemplos atípicos de la forma en la que se originó la diversificación delmetabolismo secundario, entre ellos proteínas citocromo P450 (CYP450) con actividades catalíticas para la ruta de los ABI, o la enzimanorcoclaurina sintasa (NCS) que esta emparentada con proteínas alergénicas de defensa. Así mismo, hay avances genéticos en los quese ha podido caracterizar 30 enzimas, permitiendo conocer procesos de regulación. Otro aspecto interesante es la compartimentaciónde los sitios de biosíntesis y acumulación de ABI ya que en varios casos están separados espacialmente y en distintas especies o en lamisma pueden participar varios tipos de células. Ello ha sugerido el transporte intra e intercelular de los alcaloides, los precursores yde las enzimas, se ha documentado el transporte de berberina entre el citoplasma y las vacuolas del almacenamiento. El panorama de labiosíntesis de ABI se ha construido con los estudios de ejemplares de importancia farmacológica...


The benzylisoquinoline alkaloids (BIA) are specialized metabolites with an ancient phylogeneticdistribution, but still preserved in modern clades. Some of them, such as morphine, sanguinerine or berberine, are important for modernmedicine. This review discusses the highlights of the current state of the biosynthesis of BIA. There have been studies that show thebiosynthesis of 22 of these nitrogenous metabolites. In their formation there are 43 enzymes grouped into oxidoreductases, transferasesand lyases, which in some cases represent atypical examples of the manner in which the secondary metabolism diversification wasoriginated. Two of these examples are the cytochrome proteins P450 (P450), with catalytic activities for ABI route, or the norcoclaurinesynthase enzyme (NCS), which share substantial identity with defense allergenic proteins. Likewise, there are genetic advances thathave produced the characterization of 30 enzymes, allowing knowledge of regulatory processes. Another interesting aspect is thecompartmentation of the biosynthesis sites and accumulation of BIA, since in several cases they are spatially separated and in differentspecies, or in the same species several types of cells may be involved. This has suggested intra and intercellular transport of alkaloids,precursors and enzymes, and it has been documented berberine transport between the cytoplasm and the vacuoles of storage. The picturefor the biosynthesis of BIA has been constructed with exemplary studies of alkaloids with pharmacological importance...


Os alcalóides benzilisoquinolinas (ABI) são metabólitos especializados com umadistribuição filogenética antiga, mas ainda preservada em clados modernos. Vários deles, como a morfina, sanguinarina e berberina sãoimportantes na medicina moderna. Neste artigo, se analisam os aspectos mais destacados do estado atual da biossíntese de ABI; há estudosque tem permitido conhecer a biossíntese de 22 desses metabólitos nitrogenados. Na sua síntese participam 43 enzimas agrupadas emoxidoreductases, transferases, liases e, em alguns casos, representam exemplos atípicos da forma pela qual se originou a diversificaçãodo metabolismo secundário, incluindo as proteínas do citocromo P450 (CYP450), com atividades catalíticas para a rota dos ABI, ou aenzima norcoclaurina sintase (NCS), que está relacionada com proteínas alergênicas de defesa. Da mesma forma, há avanços genéticosna caracterização de 30 enzimas, permitindo conhecer processos de regulação. Outro aspecto interessante é a compartimentalização dossítios de biossíntese e acumulação de ABI uma vez que em muitos casos estão separados espacialmente e em diferentes espécies, ou namesma podem participar vários tipos de células. Isto há sugerido o transporte intra e intercelular de alcalóides, precursores das enzimas;tem sido documentado o transporte de berberina entre o citoplasma e os vacúolos de armazenamento. A perspectiva na biossíntese deABI foi construída com os estudos de exemplares de importância farmacológica...


Asunto(s)
Alcaloides de Berberina/análisis , Alcaloides/análisis , Alcaloides/biosíntesis , Alcaloides/metabolismo , Alcaloides/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA