Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Biochem Mol Toxicol ; 38(10): e23845, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39267336

RESUMEN

Macrophage polarization and inflammation may play an important role in the development of sepsis. T-cell immunoglobulin mucin 1 (TIM1) has been demonstrated to promote macrophage inflammatory responses. However, whether TIM1 regulates macrophage polarization and inflammation to affect sepsis development remains unclear. Human monocytic leukemia cell line was induced into macrophages, followed by stimulated with LPS and IL-4 to induce M1 polarization and M2 polarization. The expression levels of TIM1, methyltransferase 3 (METTL3), and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) were examined by qRT-PCR and western blot. IL-6, IL-1ß, and TNF-α levels were tested by ELISA. CD86+cell rate was analyzed by flow cytometry. The m6A methylation level of TIM1 was assessed by MeRIP assay. The interaction of between TIM1 and METTL3 or IGF2BP2 was assessed by dual-luciferase reporter assay and RIP assay. TIM1 knockdown repressed LPS-induced macrophage M1 polarization and inflammation. In terms of mechanism, METTL3 promoted TIM1 expression through m6A modification, and this modification could be recognized by IGF2BP2. Besides, knockdown of METTL3/IGF2BP2 suppressed LPS-induced macrophage M1 polarization and inflammation, while this effect could be eliminated by TIM1 overexpression. METTL3/IGF2BP2/TIM1 axis promoted macrophage M1 polarization and inflammation, which might provide potential target for sepsis treatment.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A , Inflamación , Macrófagos , Metiltransferasas , Proteínas de Unión al ARN , Humanos , Macrófagos/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células THP-1 , Lipopolisacáridos/farmacología
2.
Biosensors (Basel) ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39194591

RESUMEN

Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). In this study, we demonstrate for the first time, using cell-based electrical impedance (CEI) biosensing, that ZIKV entry is also enhanced by expression of CD300a, another PS receptor. Furthermore, inhibiting CD300a in immature monocyte-derived dendritic cells partially but significantly inhibits ZIKV replication. As we have previously demonstrated that CEI is a useful tool to study Orthoflavivirus infection in real time, we now use this technology to determine how these PS receptors influence the kinetics of in vitro ZIKV infection. Results show that ZIKV entry is highly sensitive to minor changes in TIM-1 expression, both after overexpression of TIM-1 in infection-resistant HEK293T cells, as well as after partial knockout of TIM-1 in susceptible A549 cells. These results are confirmed by quantification of viral copy number and viral infectivity, demonstrating that CEI is highly suited to study and compare virus-host interactions. Overall, the results presented here demonstrate the potential of targeting this universal viral entry pathway.


Asunto(s)
Impedancia Eléctrica , Receptor Celular 1 del Virus de la Hepatitis A , Internalización del Virus , Infección por el Virus Zika , Virus Zika , Humanos , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Células HEK293 , Células A549 , Receptores Inmunológicos/metabolismo , Replicación Viral , Técnicas Biosensibles , Lectina 1 Similar a Ig de Unión al Ácido Siálico
3.
Fish Shellfish Immunol ; 153: 109822, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117128

RESUMEN

T-cell/transmembrane immunoglobulin and mucin domain-containing (TIM) protein family has attracted particular attention because of their broad immune functions and the response to viral infections. TIM-1, a member of the TIM family, has been demonstrated to play an important role in viral infections. However, its roles during fish nodavirus infection still remained largely unknown. In this study, a homolog of TIM-1 from orange-spotted grouper (Epinephelus coioides) (EcTIM-1) was identified, and characterized. EcTIM-1 encoded a 217-amino acids protein, containing one Immunoglobulin domain. Homology analysis showed that EcTIM-1 shared 98.62 % and 42.99 % identity to giant grouper (E. lanceolatus) and human (Homo sapiens). Quantitative Real-time PCR analyses indicated that EcTIM-1 was expressed in all examined tissues, with higher expression in liver, spleen, skin, and heart, and was significantly up-regulated in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. EcTIM-1 was distributed in the cytoplasm, and partly co-localized with Golgi apparatus and lysosomes in vitro. The ectopic expression of EcTIM-1 promoted RGNNV replication by increasing the level of viral genes transcription and protein synthesis. Besides, overexpression of EcTIM-1 decreased the luciferase activity of type I interferon (IFN1), interferon stimulated response elements (ISRE) and nuclear factor kappa-B (NF-κB) promoters, as well as the transcription of pro-inflammatory factors and interferon related genes. EcTIM-1 significantly suppressed the luciferase activity of IFN1, ISRE and NF-κB promoters evoked by Epinephelus coioides melanoma differentiation-associated gene 5 (EcMDA5), mitochondrial antiviral signaling protein (EcMAVS), stimulator of IFN genes (EcSTING) or TANK-binding kinase 1 (EcTBK1). Collectively, EcTIM-1 negatively regulated interferon and inflammatory response to promote RGNNV infection. These results provide a basis for a better understanding of the innate immune response of TIM-1 in fish.


Asunto(s)
Lubina , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Nodaviridae , Filogenia , Infecciones por Virus ARN , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Nodaviridae/fisiología , Lubina/inmunología , Lubina/genética , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Inflamación/inmunología , Inflamación/veterinaria , Inflamación/genética , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria
4.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39131348

RESUMEN

T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.

5.
Clin Exp Immunol ; 218(1): 55-64, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38975703

RESUMEN

Members of the T-cell immunoglobulin and mucin (TIM) family, which is crucial for T-cell function, are implicated in autoimmunity. TIM-1 and -3 play distinct roles in autoimmunity, with TIM-1 acting as a costimulatory molecule and TIM-3 regulating Th1 responses. We investigated the therapeutic potential of anti-TIM-1 (RMT1-10) and anti-TIM-3 (RMT3-23) antibodies in an autoimmune arthritis model. Zymosan A was used to induce arthritis in female SKG mice. The arthritis scores, histology, mRNA expression, cytokine levels, micro-computed tomography, and flow cytometry results were obtained. The application of RMT1-10 reduced the arthritis scores, histological damage, and CD4+ T-cell infiltrations, and it suppressed interleukin (IL)-6 and -17A and reduced TIM-3 mRNA expressions. RMT3-23 also lowered arthritis severity, improved histology, and reduced serum levels of tumor necrosis factor (TNF)-α and IL-17A. RMT3-23 inhibited intracellular TNF-α and IL-6 and early apoptosis. An amelioration of autoimmune arthritis was achieved by blocking the TIM-1 and -3 signaling pathways via RMT1-10 and RMT3-23 administration, leading to a widespread decrease in inflammatory cytokines. Both antibodies exhibited therapeutic effects, suggesting TIM-1 and -3 as potential targets for rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Modelos Animales de Enfermedad , Receptor Celular 1 del Virus de la Hepatitis A , Receptor 2 Celular del Virus de la Hepatitis A , Transducción de Señal , Animales , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/antagonistas & inhibidores , Ratones , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Femenino , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inhibidores , Artritis Experimental/inmunología , Artritis Experimental/metabolismo
6.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892009

RESUMEN

The kidney injury molecule (KIM)-1 is shed from proximal tubular cells in acute kidney injury (AKI), relaying tubular epithelial proliferation. Additionally, KIM-1 portends complex immunoregulation and is elevated after exposure to lipopolysaccharides. It thus may represent a biomarker in critical illness, sepsis, and sepsis-associated AKI (SA-AKI). To characterise and compare KIM-1 in these settings, we analysed KIM-1 serum concentrations in 192 critically ill patients admitted to the intensive care unit. Irrespective of kidney dysfunction, KIM-1 serum levels were significantly higher in patients with sepsis compared with other critical illnesses (191.6 vs. 132.2 pg/mL, p = 0.019) and were highest in patients with urogenital sepsis, followed by liver failure. Furthermore, KIM-1 levels were significantly elevated in critically ill patients who developed AKI within 48 h (273.3 vs. 125.8 pg/mL, p = 0.026) or later received renal replacement therapy (RRT) (299.7 vs. 146.3 pg/mL, p < 0.001). KIM-1 correlated with markers of renal function, inflammatory parameters, hematopoietic function, and cholangiocellular injury. Among subcomponents of the SOFA score, KIM-1 was elevated in patients with hyperbilirubinaemia (>2 mg/dL, p < 0.001) and thrombocytopenia (<150/nL, p = 0.018). In univariate and multivariate regression analyses, KIM-1 predicted sepsis, the need for RRT, and multi-organ dysfunction (MOD, SOFA > 12 and APACHE II ≥ 20) on the day of admission, adjusting for relevant comorbidities, bilirubin, and platelet count. Additionally, KIM-1 in multivariate regression was able to predict sepsis in patients without prior (CKD) or present (AKI) kidney injury. Our study suggests that next to its established role as a biomarker in kidney dysfunction, KIM-1 is associated with sepsis, biliary injury, and critical illness severity. It thus may offer aid for risk stratification in these patients.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Enfermedad Crítica , Receptor Celular 1 del Virus de la Hepatitis A , Sepsis , Humanos , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Sepsis/sangre , Sepsis/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Anciano , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Lesión Renal Aguda/diagnóstico , Biomarcadores/sangre , Índice de Severidad de la Enfermedad , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/etiología , Unidades de Cuidados Intensivos , Adulto
7.
Food Res Int ; 190: 114606, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945574

RESUMEN

To meet the high consumer demand, butter production has increased over the last few years. As a result, the buttermilk (BM) co-produced volumes require new ways of adding value, such as in cheese manufacturing. However, BM use in cheese milk negatively influences the cheesemaking process (e.g., altered coagulation properties) and the product's final quality (e.g., high moisture content). The concentration of BM by ultrafiltration (UF) could potentially facilitate its use in cheese manufacturing through an increased protein content while maintaining the milk salt balance. Simultaneously, little is known about the digestion of UF BM cheese. Therefore, this study aimed to characterize the impact of UF BM on cheese manufacture, its structure, and its behavior during in vitro digestion. A 2-fold UF concentrated BM was used for cheese manufacture (skim milk [SM] - control). Compositional, textural, and microstructural analyses of cheeses were first conducted. In a second step, the cheeses were fed into an in vitro TNO gastrointestinal digestion model (TIM-1) of the stomach and small intestine and protein and phospholipid (PL) bioaccessibility was studied. The results showed that UF BM cheese significantly differed from SM cheese regarding its composition, hardness (p < 0.05) and microstructure. However, in TIM-1, UF BM and SM cheeses showed similar digestion behavior as a percentage of protein and PL intake. Despite relatively more non-digested and non-absorbed PL in the ileum efflux of UF BM cheese, the initially higher PL concentration contributes to an enhanced nutritional value compared to SM cheese. To our knowledge, this study is the first to compare the bioaccessibility of proteins and PL from UF BM and SM cheeses.


Asunto(s)
Suero de Mantequilla , Queso , Digestión , Fosfolípidos , Ultrafiltración , Queso/análisis , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Fosfolípidos/química , Suero de Mantequilla/análisis , Manipulación de Alimentos/métodos , Animales , Proteínas de la Leche/metabolismo , Proteínas de la Leche/análisis , Tracto Gastrointestinal/metabolismo , Disponibilidad Biológica
8.
Front Cell Dev Biol ; 12: 1307806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831760

RESUMEN

T-cell immunoglobulin and mucin structural domain 1 (TIM-1, also known as hepatitis A virus cell receptor 1) is a co-stimulatory molecule that is expressed predominantly on the surface of T cells. TIM-1 promotes the activation and proliferation of T cells, cytokine secretion, and can also be overexpressed in various types of cancer. Upregulation of TIM-1 expression may be associated with the development and progression of cancer. After reviewing the literature, we propose that TIM-1 affects tumour development mainly through two pathways. In the Direct pathway: overexpression in tumours activates tumour-related signaling pathways, mediates the proliferation, apoptosis, invasion and metastasis, and directly affects tumour development directly. In the indirect pathway: In addition to changing the tumour microenvironment and influencing the growth of tumours, TIM-1 binds to ligands to encourage the activation, proliferation, and generation of cytokines by immune cells. This review examines how TIM-1 stimulates the development of tumours in direct and indirect ways, and how TIM-1 is exploited as a target for cancer therapy.

9.
Front Immunol ; 15: 1360219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745667

RESUMEN

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Asunto(s)
Linfocitos B Reguladores , Receptor Celular 1 del Virus de la Hepatitis A , Receptores Inmunológicos , Humanos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Femenino , Masculino , Adulto , Células B de Memoria/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Citocinas/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Células Cultivadas , Diferenciación Celular/inmunología , Memoria Inmunológica
10.
Virus Res ; 346: 199394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735439

RESUMEN

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.


Asunto(s)
Linfocitos T CD4-Positivos , Virus Hantaan , Receptor Celular 1 del Virus de la Hepatitis A , Humanos , Virus Hantaan/inmunología , Virus Hantaan/fisiología , Células Jurkat , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Replicación Viral , Endocitosis , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/inmunología , Interacciones Huésped-Patógeno/inmunología , Tropismo Viral
11.
Int J Pharm ; 652: 123804, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38220120

RESUMEN

Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.


Asunto(s)
Bifidobacterium longum subspecies infantis , Probióticos , Microesferas , Tracto Gastrointestinal , Polisacáridos , Proteína de Suero de Leche , Viabilidad Microbiana
12.
Food Res Int ; 174(Pt 1): 113521, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986510

RESUMEN

The differences in wheat flour characteristics caused by ancient (pestle and mortar), old (stone hand mill), and modern (roller and cyclone) milling techniques and their effect on in vitro starch digestibility of wheat porridge using the simulated TIM Gastrointestinal Model (TIM-1) were investigated. Ancient flour (AF) was the coarsest flour (∼70 % is >1000 µm), followed by old wholemeal flour (OWF) and old refined flour (ORF) with similar particle size distribution showing one prominent peak (at ∼1000 µm for OWF and ∼800 µm for ORF). Modern refined flour (MRF) had a monomodal distribution centered at a particle size of ∼100 µm, while modern wholemeal flour (MWF) particle size was distributed between 40 and 600 µm. MRF and MWF porridges had higher cumulative sugar bioaccessibility than OWF and AF porridges, with ORF porridge having an intermediate cumulative sugar bioaccessibility. Characterizing the cumulative sugar bioaccessibility profile with a shifted logistic model allows identifying that the maximum sugar bioaccessibility and rate of sugar release were significantly higher (p < 0.05) for MRF and MWF compared to OWF and AF porridges, while the induction times were shorter, demonstrating the importance of processing on modulating starch digestibility.


Asunto(s)
Azúcares , Triticum , Harina , Digestión , Almidón
13.
Cell Rep ; 42(10): 113254, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858466

RESUMEN

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Antígeno 2 del Estroma de la Médula Ósea , Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Antígenos CD , Antígeno 2 del Estroma de la Médula Ósea/inmunología , Ebolavirus/inmunología , Proteínas Ligadas a GPI , Fiebre Hemorrágica Ebola/virología
14.
Foods ; 12(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37835179

RESUMEN

The maple syrup industry generates substandard syrups and sugar sand as by-products, which are underused. In this study, we conducted a comprehensive analysis of the physicochemical composition of these products to assess their potential for valorization. Using HPLC analysis, we measured sugar and organic acid content as well as total polyphenol content using the Folin-Ciocalteu method. Additionally, we evaluated the in vitro digestibility using the TIM-1 model. We showed that the composition of ropy and buddy downgraded syrups is comparable to that of standard maple syrup, whereas sugar sand's composition is highly variable, with carbohydrate content ranging from 5.01 mg/g to 652.89 mg/g and polyphenol content ranging from 11.30 µg/g to 120.95 µg/g. In vitro bioaccessibility reached 70% of total sugars for all by-products. Organic acid bioaccessibility from sugar sand and syrup reached 76% and 109% relative to standard maple syrup, respectively. Polyphenol bioaccessibility exceeded 100% during digestion. This can be attributed to favorable extraction conditions, the breakdown of complex polyphenol forms and the food matrix. In conclusion, our study demonstrates that sugar sand and downgraded maple syrups exhibit digestibility comparable to that of standard maple syrup. Consequently, they hold potential as a source of polyphenols, sugar or organic acids for applications such as industrial fermentation or livestock feeds.

15.
Mol Pharm ; 20(11): 5429-5439, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37878668

RESUMEN

A TIM-1 model is an in vitro gastrointestinal (GI) simulator considering crucial physiological parameters that will affect the in vivo drug release process. The outcome of these experiments can indicate the critical bioavailability attributes (CBAs) that will impact the fraction absorbed in vivo. The model is widely used in the nonclinical stage of drug product development to assess the bioaccessible fraction of drugs for numerous candidate formulations. In this work, we developed a digital TIM-1 model in the GastroPlus platform. In a first step, we performed validation experiments to assess the luminal concentrations and bioaccessible fractions for two marker compounds. The digital TIM-1 was able to adequately reflect the luminal concentrations and bioaccessible fractions of these markers under different prandial conditions, confirming the appropriate integration of mass transfer in the TIM-1 model. In a second set of experiments, a case example with PF-07059013 was performed, where luminal concentrations and bioaccessible fractions were predicted for 200 and 1000 mg doses under fasted and achlorhydric conditions. Experimental and simulated data pointed out that the achlorhydric effect was more pronounced at the 1000 mg dose, showing a solubility-limited dissolution and, consequently, decreased bioaccessible fraction. Toward future applications, the digital TIM-1 model will be thoroughly applied to explore a link between in vitro and in vivo outcomes based on more case examples with model compounds with the access of TIM-1 and plasma data. Ideally, this digital TIM-1 can be directly used in GastroPlus to explore an in vitro-in vivo correlation (IVIVC) between the fraction dissolved (digital TIM-1 settings) and the fraction absorbed (human PBPK settings).


Asunto(s)
Química Farmacéutica , Absorción Intestinal , Humanos , Absorción Intestinal/fisiología , Modelos Biológicos , Tracto Gastrointestinal , Liberación de Fármacos
16.
Heliyon ; 9(8): e18059, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37534001

RESUMEN

Marburg virus (MARV) has been a major concern since its first outbreak in 1967. Although the deadly BSL-4 pathogen has been reported in few individuals with sporadic outbreaks following 1967, its rarity commensurate the degree of disease severity. The virus has been known to cause extreme hemorrhagic fever presenting flu-like symptoms (as implicated in COVID-19) with a 90% case fatality rate (CFR). After a number of plausible evidences, it has been observed that the virus usually originates from African fruit bat, Rousettus aegyptiacus, who themselves do not indicate any signs of illness. Thus, efforts have been made in the recent years for a universal treatment of the infection, but till date, no such vaccine or therapeutics could circumvent the viral pathogenicity. In an attempt to formulate a vaccine design computationally, we have explored the entire proteome of the virus and found a strong correlation of its glycoprotein (GP) in receptor binding and subsequent role in infection progression. The present study, explores the MARV glycoprotein GP1 and GP2 domains for quality epitopes to elicit an extended immune response design potential vaccine construct using appropriate linkers and adjuvants. Finally, the chimeric vaccine wass evaluated for its binding affinity towards the receptors via molecular docking and molecular dynamics simulation studies. The rare, yet deadly zoonotic infection with mild outbreaks in recent years has flustered an alarming future with various challenges in terms of viral diseases. Thus, our study has aimed to provide novel insights to design potential vaccines by using the predictive framework.

17.
Food Res Int ; 167: 112688, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087260

RESUMEN

Ultra-processed, plant-based burgers (PB) and traditional comminuted-beef burgers (BB) share similar organoleptic characteristics, yet a knowledge gap exists in understanding how consumption of these divergent physical structures alters the lipemic response and gut microbiota. PB, comprised of highly refined ingredients, is formulated with no intact whole food structure, while BB entraps lipids throughout the myofibrillar protein network. PB presented significantly higher free fatty acid (FFA) bioaccessibility (28.2 ± 4.80 %) compared to BB (8.73 ± 0.52 %), as obtained from their FFA release profiles over digestion time after characterizing them with a modified logistic model (SLM), using the simulated TIM Gastro-Intestinal Model (TIM-1). Additionally, the rate of lipolysis, k, obtained from the SLM for PB (90% CI [0.0175, 0.0277] min-1) was higher than for BB (90% CI [0.0113, 0.0171] min-1). Using the Simulated Human Intestinal Microbial Ecosystem (SHIME®), the Firmicutes to Bacteroidetes ratio (F/B ratio) was significantly higher for PB than BB; and linear discriminant analysis effect size (LEfSe) showed Clostridium and Citrobacter were more highly represented in the microbial community for the PB feed, whereas BB feed differentially enriched Megasphaera, Bacteroides, Alistipes, and Blautia at the genus level. Additionally, short-chain fatty acid (SCFA) production was altered (p < 0.05) site-specifically in each colon vessel, which could be attributed to the available substrates and changes in microbial composition. Total SCFAs were significantly higher for PB in the ascending colon (AC) and descending colon (DC) but higher for BB only in the transverse colon (TC). This research illustrates the crucial role of meat analog physical structure in modulating nutritional aspects beyond food composition alone.


Asunto(s)
Ecosistema , Intestinos , Animales , Humanos , Bovinos , Heces , Colon , Ácidos Grasos Volátiles , Bacteroidetes
18.
Viruses ; 14(10)2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36298679

RESUMEN

Human T-cell immunoglobulin mucin 1 (hTIM-1) is known to promote cellular entry of enveloped viruses. Previous studies suggested that the polymorphisms of hTIM-1 affected its function. Here, we analyzed single nucleotide variants (SNVs) of hTIM-1 to determine their ability to promote cellular entry of viruses using pseudotyped vesicular stomatitis Indiana virus (VSIV). We obtained hTIM-1 sequences from a public database (Ensembl genome browser) and identified 35 missense SNVs in 3 loops of the hTIM-1 immunoglobulin variable (IgV) domain, which had been reported to interact with the Ebola virus glycoprotein (GP) and phosphatidylserine (PS) in the viral envelope. HEK293T cells transiently expressing wildtype hTIM-1 or its SNV mutants were infected with VSIVs pseudotyped with filovirus or arenavirus GPs, and their infectivities were compared. Eleven of the thirty-five SNV substitutions reduced the efficiency of hTIM-1-mediated entry of pseudotyped VSIVs. These SNV substitutions were found not only around the PS-binding pocket but also in other regions of the molecule. Taken together, our findings suggest that some SNVs of the hTIM-1 IgV domain have impaired ability to interact with PS and/or viral GPs in the viral envelope, which may affect the hTIM-1 function to promote viral entry into cells.


Asunto(s)
Ebolavirus , Internalización del Virus , Humanos , Mucina-1 , Receptores Virales/genética , Fosfatidilserinas , Células HEK293 , Ebolavirus/genética , Glicoproteínas , Inmunoglobulinas , Nucleótidos , Proteínas del Envoltorio Viral
19.
Vet Microbiol ; 274: 109555, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36095877

RESUMEN

Japanese encephalitis virus (JEV) is a major causative agent of neurological infection affecting humans and pigs. Human T Cell Immunoglobulin and Mucin Domain 1 (hTIM-1) enhances the infection of JEV through virion-associated phosphatidylserine (PS) binding. Here, five swine TIM-1 (sTIM-1) gene variants were cloned from pig lung tissues by reverse-transcriptase polymerase chain reaction (RT-PCR). Sequence alignment analysis revealed that the gene homology between the sTIM-1 and hTIM-1 was 42.3-43.8%. Furthermore, ectopic expression of all five sTIM-1 variants in 293 T cells can promote JEV entry and infection. However, sTIM-1 V3 exhibited significantly less potent at promoting virus entry compared to the other four variants. Further studies revealed that the 34th amino acid of sTIM-1is critical for the entry of JEV, which is Pro34 in sTIM-1V3 while Leu34 in other four sTIM-1 variants. Mechanically, leucine at locus 34 was associated with the membrane distribution of sTIM-1, thereby affecting viral entry and infection. In total, our findings provide evidence that the PS receptor sTIM-1 promotes the infection of JEV and that the 34th amino acid position is critical for sTIM-1 to mediate viral infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Porcinos , Animales , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Fosfatidilserinas , Leucina/genética , Encefalitis Japonesa/veterinaria , Mutación , Inmunoglobulinas , Mucinas/genética
20.
Front Nutr ; 9: 940045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938112

RESUMEN

It is poorly understood how the physical state of emulsified triacylglycerol (TAG) alters colloidal behavior in the gastrointestinal tract to modulate lipid digestion and absorption. We, therefore, aimed to investigate the individual and combined effects on fatty acid (FA) bioaccessibility using the dynamic TIM-1 in vitro digestion model and integrate the results with those from a human clinical study. Four 20% oil-in-water emulsions with overlapping particle size distributions contained either partially crystalline solid (palm stearin) or liquid (palm olein) lipid droplets at 37°C and either the colloidally acid-stable Tween 80 (2.2%) or acid-unstable Span 60 (2.5%) emulsifier. Experimental meals were fed to the TIM-1, and jejunal and ileal dialysates were analyzed over 6 h to measure free FA concentration. Cumulative FA bioaccessibility was significantly higher for the liquid stable emulsion compared to all others (p < 0.05), which did not differ (p > 0.05). Emulsified TAG physical state was associated with differences in overall bioaccessibility (higher for liquid state TAG) in the colloidally stable emulsions, but this difference was blunted in droplets susceptible to acidic flocculation. In contrast, human postprandial TAG concentrations did not differ significantly between the emulsions. The discrepancy may relate to differences in in vivo gastric emptying (GE) as evidenced by ultrasonography. When the in vivo differences in GE were accounted for in follow-up TIM-1 experiments, the findings aligned more closely. Cumulative FA bioaccessibility for the liquid stable emulsion no longer differed significantly from the other emulsions, and SU's bioaccessibility was the lowest, consistent with the in vivo observations. This work highlights the potential for TAG physical state and colloidal stability to interactively alter behavior in the gastrointestinal tract with implications for FA absorption, and the importance of establishing and improving in vitro-in vivo correlations in food-nutrition research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA