Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chin Chem Lett ; : 108514, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37362325

RESUMEN

New pollutant pharmaceutical and personal care products (PPCPs), especially antiviral drugs, have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment. Electro-Fenton technology is an effective method to remove PPCPs from water. Novel particle electrodes (MMT/rGO/Fe3O4) were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional Electro-Fenton (3D-EF) system. The electrodes combined the catalytic property of Fe3O4, hydrophilicity of montmorillonite and electrical conductivity of graphene oxides, and applied for the degradation of Acyclovir (ACV) with high efficiency and ease of operation. At optimal condition, the degradation rate of ACV reached 100% within 120 min, and the applicable pH range could be 3 to 11 in the 3D-EF system. The stability and reusability of MMT/rGO/Fe3O4 particle electrodes were also studied, the removal rate of ACV remained at 92% after 10 cycles, which was just slightly lower than that of the first cycle. Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.

2.
J Environ Manage ; 325(Pt B): 116466, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327605

RESUMEN

For the efficient removal of the bio-refractory organic pollutants in the electronic industry wastewater, the Ni-Fe (oxides) modified three-dimension (3D) particle electrode was applied in electro-Fenton system (3D/EF), where iron ions were released from anode and deposited onto algal biochar (ABC) to prepare composite catalyst during reaction process. Firstly, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were applied to confirm successful fabrication of the 3D particle electrode materials. Secondly, COD removal efficiency could reach about 80%, which was about 20% higher than that in 2D/EF system, under the optimized conditions as 2.0 g/L of Ni-ABC particle electrodes, initial pH of 3, 100 mL/min of aeration intensity and 20 mA/cm2 of applied current density. Thirdly, characterized using three-dimensional fluorescence spectroscopy and GC-MS analysis, it seemed that most of the macromolecular substances could be degraded, whereas mono-2-ethylhexyl phthalate (MEHP) was identified as the most abundant and representative compound. Finally, possible degradation pathway of MEHP in 3D/EF system was proposed including dealkylation, cleavage of C-O bond, and demethylation. Therefore, this study provides a new strategy in designing EF system employing bimetal doped biochar composite for an efficient elimination of organic pollutants within electronic industry wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Electrodos , Electrónica , Oxidación-Reducción
3.
Chemosphere ; 308(Pt 3): 136544, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152828

RESUMEN

Novel iron-loaded needle coke spherical electrodes were fabricated for the first time using the sintering method. With DSA as the anode, nickel foam as the cathode and the spherical electrodes as the particle electrodes, a three-dimensional (3D) electro-Fenton system was constructed to treat coking wastewater. Using the chemical oxygen demand (COD) removal efficiency of coking wastewater as an indicator of electrode performance, the optimal conditions for particle electrode preparation were determined by single-factor experiments as consisting of a 4:1 catalyst-to-binder ratio, Fe2+ loading for the preparation of the particle electrodes of 2.5%, a particle size of 5.5 ± 0.5 mm, and a sintering temperature of 400 °C. Response surface methodology was applied to model and optimise the 3D electro-Fenton process for treating coking wastewater. Under the optimal conditions of an electrode spacing of 5 cm, applied voltage of 11.15 V, initial pH of 2.62, and particle electrode dosing of 12.23 g L-1, the removal rates of COD, NH3-N, NO3--N, total nitrogen, colour, and UV254 were 87.5%, 100%, 72.2%, 84.8%, 95%, and 72.4%, respectively. Spectral analysis revealed that the 3D electro-Fenton system strongly degraded coking wastewater, causing decomposition of large molecules of organic compounds and residuals primarily consisting of olefins and alkanes. Because the prepared particle electrodes exhibited stable physical and chemical structure, they have great potential for engineering applications due to their resistance to water flow erosion, stable catalytic reaction activity, and reusability.


Asunto(s)
Coque , Contaminantes Químicos del Agua , Alcanos , Alquenos , Coque/análisis , Electrodos , Peróxido de Hidrógeno/química , Hierro/química , Níquel/análisis , Nitrógeno/análisis , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 29(49): 74163-74172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35633458

RESUMEN

Semi-coking wastewater contains a rich source of toxic and refractory compounds. Three-dimensional electro-Fenton (3D/EF) process used CuFe2O4 as heterocatalyst and activated carbon (AC) as particle electrode was constructed for degrading semi-coking wastewater greenly and efficiently. CuFe2O4 nanoparticles were prepared by coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disperse spectroscopy (EDS). Factors like dosage of CuFe2O4, applied voltage, dosage of AC and pH, which effect COD removal rate of semi-coking waste water were studied. The results showed that COD removal rate reached to 80.9% by 3D/EF process at the optimum condition: 4 V, 0.3 g of CuFe2O4, 1 g of AC and pH = 3. Trapping experiment suggesting that hydroxyl radical (•OH) is the main active radical. The surface composition and chemical states of the fresh and used CuFe2O4 were analyzed by XPS indicating that Fe, Cu, and O species are involved into the 3D/EF process. Additionally, anode oxidation and the adsorption and catalysis of AC are also contributed to the bleaching of semi-coking waste water. The possible mechanisms of 3D/EF for degrading semi-coking waste water by CuFe2O4 heterocatalyst were proposed.


Asunto(s)
Coque , Contaminantes Químicos del Agua , Catálisis , Carbón Orgánico/química , Coque/análisis , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 25(18): 17989-18000, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29687198

RESUMEN

The emission of the source effluent of azo dyes has resulted in a serial of environmental problems including of the direct damage of the natural esthetics, the inhibition of the oxygen exchange, the shortage of the photosynthesis, and the reduction of the aquatic flora and fauna. A bioelectrochemical platform (3D-EF-MFCs) combining two-chamber microbial fuel cells and three dimensional electro-Fenton technique were delicately designed and assembled to explore the decolorization, bio-genericity performance of the methyl orange, and the possible biotic-abiotic degradation mechanisms. The 3D-EF-MFCs processes showed higher decolorization efficiencies, COD removals, and better bioelectricity performance than the pure electro-Fenton-microbial fuel cell (EF-MFC) systems. The two-chamber experiments filling with the granular activated carbons were better than the single-chamber packing system on the whole. The moderate increase of Fe2+ ions dosing in the cathode chamber accelerated the formation of •OH, which further enhanced the degradation of the methyl orange (MO). The cathode-decolorization and COD removals were decreased with the increase of MO concentration. However, the degradation performance of MO was indirectly improved in the anode compartment at the same conditions. The bed electrodes played a mediator role in the anode and cathode chambers, certainly elevated the voltage output and the power density, and lowered the internal impedance of EF-MFC process.


Asunto(s)
Compuestos Azo/química , Oxígeno/química , Aguas Residuales/química , Compuestos Azo/metabolismo , Fuentes de Energía Bioeléctrica , Electricidad , Electrodos
6.
Bioresour Technol ; 196: 721-5, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26227570

RESUMEN

A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications.


Asunto(s)
Carbón Orgánico/química , Carbón Mineral , Técnicas Electroquímicas/métodos , Residuos Industriales/análisis , Aguas Residuales/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA