Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10699, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729974

RESUMEN

In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.


Asunto(s)
Opsinas , Retinaldehído , Espermatozoides , Vitamina A , Masculino , Animales , Espermatozoides/metabolismo , Espermatozoides/fisiología , Ratones , Opsinas/metabolismo , Humanos , Retinaldehído/metabolismo , Vitamina A/metabolismo , Taxia/fisiología , Motilidad Espermática/fisiología , Isomerismo
2.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547866

RESUMEN

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Respuesta al Choque Térmico , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN Mensajero , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Unión Proteica , ARN de Hongos/metabolismo , ARN de Hongos/genética
3.
Front Plant Sci ; 14: 1276649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860244

RESUMEN

The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.

4.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574427

RESUMEN

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Ácidos Indolacéticos
5.
Trends Plant Sci ; 28(11): 1201-1204, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37407410

RESUMEN

Seed thermoinhibition protects emerging seedlings from thermodamage by preventing seed germination at elevated temperatures. It had remained unknown how a seed fine-tunes its germination in response to temperature. Recently, Piskurewicz et al. demonstrated that endosperm phyB senses increased temperature, thereby facilitating PIF3-mediated abscisic acid (ABA) accumulation to inhibit germination and embryo elongation.

6.
Curr Opin Plant Biol ; 74: 102397, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295295

RESUMEN

Light and temperature are two distinct but closely linked environmental factors that profoundly affect plant growth and development. Biomolecular condensates are membraneless micron-scale compartments formed through liquid-liquid phase separation, which have been shown to be involved in a wide range of biological processes. In the last few years, biomolecular condensates are emerged to serve as phase separation-based sensors for plant sensing and/or responding to external environmental cues. This review summarizes the recently reported plant biomolecular condensates in sensing light and temperature signals. The current understanding of the biophysical properties and the action modes of phase separation-based environmental sensors are highlighted. Unresolved questions and possible challenges for future studies of phase-separation sensors are also discussed.

7.
Trends Plant Sci ; 28(8): 924-940, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37045740

RESUMEN

Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.


Asunto(s)
Desarrollo de la Planta , Plantas , Temperatura , Plantas/genética , Transducción de Señal , Percepción
8.
J Microbiol ; 61(3): 343-357, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37010795

RESUMEN

Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Temperatura , Proteínas Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Frío , Escherichia coli/metabolismo , Calor , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
9.
Annu Rev Plant Biol ; 74: 341-366, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36854477

RESUMEN

Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in Arabidopsis thaliana occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Temperatura , Fitomejoramiento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Productos Agrícolas , Regulación de la Expresión Génica de las Plantas
10.
Anal Chim Acta ; 1239: 340708, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628715

RESUMEN

Developing a ready-to-use miniaturized thermosensor is a great challenge due to its individual use on a large scale for daily business such as food industry and healthcare. Herein, a polyethylene glycol (PEG)-modified graphene oxide (GO)-based hydrogel thermosensor was established with a fluorescent dye-labeled peptide nucleic acid (F-PNA). The size-tunable hydrogel with high water content and sufficient solidity allowed free movement of the oligonucleotides through the pores and improved usability for handling the sensor. In the PEG-GO hydrogel, the DNA/F-PNA duplex could be denatured by increasing the temperature, followed by selective PNA capture on the PEG-GO. Using this principle, the PEG-GO hydrogel exhibited a change in the fluorescence signal of F-PNA in a temperature-dependent manner, allowing real-time visualization of temperature on a large scale. The temperature detection range of this system can be adjusted by designing the PNA strands based on the melting temperature of the DNAzyme/PNA duplex. Its sensing specificity and detection range could be increased and broadened by observing multi-color detection using PNA probes labeled with different fluorescent dyes of different lengths in a single hydrogel. In addition, the hydrogel platform is easy to store for long time periods via dehydration and can be restored with the addition of water, allowing easy transport, storage, and use of the thermosensor in everyday life.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/química , Hidrogeles , Agua , Polietilenglicoles/química , Hibridación de Ácido Nucleico
11.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296389

RESUMEN

The expression of genes of interest (GOI) can be initiated by providing external stimuli such as temperature shifts and light irradiation. The application of thermal or light stimuli triggers structural changes in stimuli-sensitive biomolecules within the cell, thereby inducing or repressing gene expression. Over the past two decades, several groups have reported genetic circuits that use natural or engineered stimuli-sensitive modules to manipulate gene expression. Here, we summarize versatile strategies of thermosensors and light-driven systems for the conditional expression of GOI in bacterial hosts.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Temperatura , Expresión Génica
12.
Front Plant Sci ; 13: 938570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092413

RESUMEN

RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.

13.
14.
Biochem Biophys Rep ; 31: 101315, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35898728

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in nociceptive primary sensory neurons and acts as a sensor for heat and capsaicin. The functional properties of TRPV1 have been reported to vary among species and, in some cases, the species difference in its thermal sensitivity is likely to be associated with thermal habitat conditions. To clarify the functional properties and physiological roles of TRPV1 in aquatic vertebrates, we examined the temperature and chemical sensitivities of TRPV1 in masu salmon (Oncorhynchus masou ishikawae, Om) belonging to a family of salmonids that generally prefer cool environments. First, behavioral experiments were conducted using a video tracking system. Application of capsaicin, a TRPV1 agonist, induced locomotor activities in juvenile Om. Increasing the ambient temperature also elicited locomotor activity potentiated by capsaicin. RT-PCR revealed TRPV1 expression in gills as well as spinal cord. Next, electrophysiological analyses of OmTRPV1 were performed using a two-electrode voltage-clamp technique with a Xenopus oocyte expression system. Heat stimulation evoked an inward current in heterologously expressed OmTRPV1. In addition, capsaicin produced current responses in OmTRPV1-expressing oocytes, but higher concentrations were needed for its activation compared to the mammalian orthologues. These results indicate that Om senses environmental stimuli (heat and capsaicin) through the activation of TRPV1, and this channel may play important roles in avoiding environments disadvantageous for survival in aquatic vertebrates.

15.
Mol Cell ; 82(16): 3015-3029.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35728588

RESUMEN

Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Transducción de Señal , Temperatura
16.
Front Plant Sci ; 13: 870207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574086

RESUMEN

The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.

17.
Plant Cell Physiol ; 63(6): 737-743, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35348773

RESUMEN

Although many studies on plant growth and development focus on the effects of light, a growing number of studies dissect plant responses to temperature and the underlying signaling pathways. The identity of plant thermosensing molecules (thermosensors) acting upstream of the signaling cascades in temperature responses was elusive until recently. During the past six years, a set of plant thermosensors has been discovered, representing a major turning point in the research on plant temperature responses and signaling. Here, we review these newly discovered plant thermosensors, which can be classified as sensors of warmth or cold. We compare between plant thermosensors and those from other organisms and attempt to define the subcellular thermosensing compartments in plants. In addition, we discuss the notion that photoreceptive thermosensors represent a novel class of thermosensors, the roles of which have yet to be described in non-plant systems.


Asunto(s)
Plantas , Sensación Térmica , Frío , Desarrollo de la Planta , Plantas/genética , Temperatura , Sensación Térmica/fisiología
18.
Biotechnol Adv ; 55: 107907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041863

RESUMEN

Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.


Asunto(s)
Biología Sintética , Sensación Térmica , Biotecnología , Temperatura
19.
PNAS Nexus ; 1(2): pgac030, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36713324

RESUMEN

Plant cells perceive cold temperatures and initiate cellular responses to protect themselves against cold stress, but which cellular compartment mediates cold sensing has been unknown. Chloroplasts change their position in response to cold to optimize photosynthesis in plants in a process triggered by the blue-light photoreceptor phototropin (phot), which thus acts as a cold-sensing molecule. However, phot in plant cells is present in multiple cellular compartments, including the plasma membrane (PM), cytosol, Golgi apparatus, and chloroplast periphery, making it unclear where phot perceives cold and activates this cold-avoidance response. Here, we produced genetically encoded and modified variants of phot that localize only to the cytosol or the PM and determined that only PM-associated phot-induced cold avoidance in the liverwort Marchantia polymorpha. These results indicate that the phot localized to the PM constitutes a cellular compartment for cold sensing in plants.

20.
Front Robot AI ; 8: 558953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722640

RESUMEN

On the roadmap to building completely autonomous artificial bio-robots, all major aspects of robotic functions, namely, energy generation, processing, sensing, and actuation, need to be self-sustainable and function in the biological realm. Microbial Fuel Cells (MFCs) provide a platform technology for achieving this goal. In a series of experiments, we demonstrate that MFCs can be used as living, autonomous sensors in robotics. In this work, we focus on thermal sensing that is akin to thermoreceptors in mammalian entities. We therefore designed and tested an MFC-based thermosensor system for utilization within artificial bio-robots such as EcoBots. In open-loop sensor characterization, with a controlled load resistance and feed rate, the MFC thermoreceptor was able to detect stimuli of 1 min directed from a distance of 10 cm causing a temperature rise of ∼1°C at the thermoreceptor. The thermoreceptor responded to continuous stimuli with a minimum interval of 384 s. In a practical demonstration, a mobile robot was fitted with two artificial thermosensors, as environmental thermal detectors for thermotactic application, mimicking thermotaxis in biology. In closed-loop applications, continuous thermal stimuli were detected at a minimum time interval of 160 s, without the need for complete thermoreceptor recovery. This enabled the robot to detect thermal stimuli and steer away from a warmer thermal source within the rise of 1°C. We envision that the thermosensor can be used for future applications in robotics, including as a potential sensor mechanism for maintaining thermal homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA