Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 15(1)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300786

RESUMEN

The bioengineering of artificial tissue constructs requires special attention to their fast vascularization to provide cells with sufficient nutrients and oxygen. We addressed the challenge ofin vitrovascularization by employing a combined approach of cell sheet engineering, 3D printing, and cellular self-organization in dynamic maturation culture. A confluent cell sheet of human umbilical vein endothelial cells (HUVECs) was detached from a thermoresponsive cell culture substrate and transferred onto a 3D-printed, perfusable tubular scaffold using a custom-made cell sheet rolling device. Under indirect co-culture conditions with human dermal fibroblasts (HDFs), the cell sheet-covered vessel mimic embedded in a collagen gel together with additional singularized HUVECs started sprouting into the surrounding gel, while the suspended cells around the tube self-organized and formed a dense lumen-containing 3D vascular network throughout the gel. The HDFs cultured below the HUVEC-containing cell culture insert provided angiogenic support to the HUVECs via molecular crosstalk without competing for space with the HUVECs or inducing rapid collagen matrix remodeling. The resulting vascular network remained viable under these conditions throughout the 3 week cell culture period. This static indirect co-culture setup was further transferred to dynamic flow conditions, where the medium perfusion was enabled via two independently addressable perfusion circuits equipped with two different cell culture chambers, one hosting the HDFs and the other hosting the HUVEC-laden collagen gel. Using this system, we successfully connected the collagen-embedded HUVEC culture to a dynamic medium flow, and within 1 week of the dynamic cell culture, we detected angiogenic sprouting and dense microvascular network formation via HUVEC self-organization in the hydrogel. Our approach of combining a 3D-printed and cell sheet-covered vascular precursor that retained its sprouting capacity together with the self-assembling HUVECs in a dynamic perfusion culture resulted in a vascular-like 3D network, which is a critical step toward the long-term vascularization of bioengineeredin vitrotissue constructs.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Células Endoteliales de la Vena Umbilical Humana , Técnicas de Cultivo de Célula , Colágeno/farmacología , Perfusión , Oxígeno , Andamios del Tejido , Neovascularización Fisiológica
2.
Tissue Eng Part A ; 28(15-16): 661-671, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35057641

RESUMEN

Fabrication and application of engineered complex tissues composed of different types of cells is a crucial milestone in the next phase of tissue engineering. The delicate organization structure of each tissue component and its physiological connections enable all the functions in the human body. In this study, cell sheet-based engineering allowed us to fabricate a complex myofiber sheet tissue using motor neurons derived from human-induced pluripotent stem cells. In contrast with previous studies of other groups, a myofiber sheet with a biomimetic aligned structure was produced from human myoblasts using a striped-patterned thermoresponsive dish, which enabled manipulation of the sheet tissue by simply lowering the culture temperature. The myofiber sheet was transferred onto a gel that promotes functional maturation of human myofibers, resulting in production of contractile human muscle tissue. Just by seeding motor neurons onto the sheet tissue, all the neurons physically contacted to the aligned myofibers, and autonomously elongated in parallel to the myofiber orientation. In addition, the neurite outgrowth was enlarged by coculturing on the myofiber sheet. The presence of the neurons enhanced clustering of myofiber acetylcholine receptors (AChRs), typically found at the neuromuscular junctions (NMJs). Consequently, contraction behaviors of the myofiber sheet were regulated by neuronal signal transduction through NMJs. Muscle contraction was induced when the motor neurons were stimulated by glutamic acid, and effectively blocked by administration of d-tubocurarine as an antagonistic inhibitor for the AChR. The fibrin-based gel was useful as a culture environment for tissue maturation and as a favorable substrate for unobstructed contractions. Our neuron-muscle sheet tissue will be scalable by simply enlarging the micropatterned substrate and manipulable three dimensionally; fabrication of a thick tissue and a bundle-like structured tissue will be possible just by layering multiple sheets or rolling up the sheet. Simplified control over self-orientation of neurite elongation will be advantageous for fabrication of such a large and complex tissue. Therefore, our methodology, established in this study, will be instrumental in future applications of regenerative medicine for locomotion apparatus. Impact Statement A complex tissue containing skeletal myofibers and induced pluripotent stem cell-derived motor neurons was fabricated from human cells based on the cell sheet engineering technology. A micropatterned thermoresponsive culture dish and a fibrin-based gel substrate enabled production of aligned, and functionally matured myofiber sheet tissue. The motor neurons were autonomously oriented simply by seeding on the aligned myofiber sheet tissue. Induction and inhibition of the muscle contraction were effectively controlled by neuronal signal transduction. Considering the potential scalability and manipulability of the neuron-muscle sheet tissue, our methodology will contribute to future applications of regenerative medicine for locomotion apparatus.


Asunto(s)
Células Madre Pluripotentes Inducidas , Fibrina , Humanos , Neuronas Motoras , Contracción Muscular/fisiología , Ingeniería de Tejidos/métodos
3.
Sci Technol Adv Mater ; 22(1): 481-493, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34211335

RESUMEN

A variety of poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces have been reported for temperature-controlled cell adhesion/detachment. However, the surfaces reported to date need further improvement to achieve good outcomes for both cell adhesion and detachment, which are inherently contradictory behaviors. This study investigated the effects of terminal cationization and length of grafted PIPAAm chains on temperature-dependent cell behavior. PIPAAm brushes with three chain lengths were constructed on glass coverslips via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Terminal substitution of the grafted PIPAAm chains with either monocationic trimethylammonium or nonionic isopropyl moieties was performed through the reduction of terminal RAFT-related groups and subsequent thiol-ene reaction with the corresponding acrylamide derivatives. Although the thermoresponsive properties of the PIPAAm brush surfaces were scarcely affected by the terminal functional moiety, the zeta potentials of the cationized PIPAAm surfaces were higher than those of the nonionized ones, both below and above the phase transition temperature of PIPAAm (30°C). When bovine endothelial cells were cultured on each surface at 37°C, the number of adherent cells decreased with longer PIPAAm. Notably, cell adhesion on the cationized PIPAAm surfaces was higher than that on the nonionized surfaces. This terminal effect on cell adhesion gradually weakened with increasing PIPAAm length. In particular, long-chain PIPAAm brushes virtually showed cell repellency even at 37°C, regardless of the termini. Interestingly, moderately long-chain PIPAAm brushes promoted cell detachment at 20°C, with negligible terminal electrostatic interruption. Consequently, both cell adhesion and detachment were successfully improved by choosing an appropriate PIPAAm length with terminal cationization.

4.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572748

RESUMEN

The fusion process of mononuclear monocytes into multinuclear osteoclasts in vitro is an essential process for the study of osteoclastic resorption of biomaterials. Thereby biomaterials offer many influencing factors such as sample shape, material composition, and surface topography, which can have a decisive influence on the fusion and thus the entire investigation. For the specific investigation of resorption, it can therefore be advantageous to skip the fusion on samples and use mature, predifferentiated osteoclasts directly. However, most conventional detachment methods (cell scraper, accutase), lead to a poor survival rate of osteoclasts or to a loss of function of the cells after their reseeding. In the present study different conventional and novel methods of detachment in combination with different culture surfaces were investigated to obtain optimal osteoclast differentiation, yield, and vitality rates without loss of function. The innovative method-using thermoresponsive surfaces for cultivation and detachment-was found to be best suited. This is in particular due to its ability to maintain osteoclast activity, as proven by TRAP 5b-, CTSK-activity and resorption pits on dentin discs and decellularized osteoblast-derived matrix plates. In conclusion, it is shown, that osteoclasts can be predifferentiated on cell culture dishes and transferred to a reference biomaterial under preservation of osteoclastic resorption activity, providing biomaterial researchers with a novel tool for material characterization.


Asunto(s)
Materiales Biocompatibles/química , Monocitos/citología , Osteoclastos/citología , Resorción Ósea , Adhesión Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Osteogénesis
5.
Environ Sci Technol ; 55(2): 1178-1189, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33403849

RESUMEN

Microalgae is a promising candidate for reducing greenhouse gas and producing renewable biofuels. For microalgae biofilm cultivation, a strong adhesion ability of microalgae cells onto the surface is a prerequisite to resist the fluid shear stress, while strong adhesion is not of benefit to the biofilm harvesting process. To solve this dilemma, a thermoresponsive surface (TMRS) with lower critical solution temperature of 33 °C was made by grafting N-isopropylacrylamide onto a silicate glass slide. The wettability of the TMRS changed from hydrophilic (contact angle of 59.4°) to hydrophobic (contact angle of 91.6°) when the temperature rose from 15 to 35 °C, resulting in the increase of adhesion energy of the TMRS to Chlorella vulgaris cells by 135.6%. The experiments showed that the cells were more likely to attach onto the TMRS at the higher temperature of 35 °C owing to the surface microstructures generated by the hydrogel layer shrinkage, which is similar in size to the microalgae cells. And the cell coverage rate on TMRS increased by 32% compared to the original glass surface. Conversely, the cells separate easily from the TMRS at a lower temperature of 15 °C, and the cell adhesion density was reduced by 19% due to hydrogel layer swelling to a relatively flat surface.


Asunto(s)
Chlorella vulgaris , Microalgas , Acrilamidas , Resinas Acrílicas , Biopelículas , Adhesión Celular , Hidrogeles , Propiedades de Superficie , Temperatura
6.
Macromol Biosci ; 21(3): e2000330, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369185

RESUMEN

Cell micropatterning on micropatterned thermoresponsive polymer-based culture surfaces facilitates the creation of on-demand and functional cell sheets. However, the fabrication of micropatterned surfaces generally includes complicated procedures with multi-step chemical reactions. To overcome this issue, this study proposes a facile preparation of micropatterned thermoresponsive surfaces via a two-step physical coating of two different diblock copolymers. Both copolymers contain poly(butyl methacrylate) blocks as hydrophobic anchors for water-stable polymer deposition. At first, thermoresponsive polymer layers are constructed on cell culture dishes via spin-coating block copolymers containing poly(N-isopropylacrylamide) blocks that exhibit a transition temperature of ≈30 °C in aqueous media. To create polymer micropatterns on the thermoresponsive surfaces, microcontact printing of block copolymers containing hydrophilic poly(N-acryloylmorpholine) (PNAM) blocks is performed using polydimethylsiloxane stamps. Stamped PNAM-based block polymers are adsorbed to the outermost thermoresponsive surfaces, and increase the surface hydrophilicity with decreasing protein adsorption. Cells adhere and proliferate on the thermoresponsive domains at 37 °C, whereas the stamped hydrophilic domains remain cell-repellent for 7 days. At 20 °C, cell sheets with controlled sizes and shapes are harvested from the surfaces with the desired micropatterns. This technique is useful for the preparation of micropatterned polymer surfaces for various biomedical applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Microtecnología/métodos , Polímeros/química , Resinas Acrílicas/química , Animales , Bovinos , Forma de la Célula , Células Cultivadas , Células Endoteliales/citología , Propiedades de Superficie , Temperatura , Factores de Tiempo
7.
Biomaterials ; 221: 119411, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419657

RESUMEN

Commonly, stem cell culture is based on batch-type culture, which is laborious and expensive. We continuously cultured human pluripotent stem cells (hPSCs) on thermoresponsive dish surfaces, where hPSCs were partially detached on the same thermoresponsive dish by decreasing the temperature of the thermoresponsive dish to be below the lower critical solution temperature for only 30 min. Then, the remaining cells were continuously cultured in fresh culture medium, and the detached stem cells were harvested in the exchanged culture medium. hPSCs were continuously cultured for ten cycles on the thermoresponsive dish surface, which was prepared by coating the surface with poly(N-isopropylacrylamide-co-styrene) and oligovitronectin-grafted poly(acrylic acid-co-styrene) or recombinant vitronectin for hPSC binding sites to maintain hPSC pluripotency. After ten cycles of continuous culture on the thermoresponsive dish surface, the detached cells expressed pluripotency proteins and had the ability to differentiate into cells derived from the three germ layers in vitro and in vivo. Furthermore, the detached cells differentiated into specific cell lineages, such as cardiomyocytes, with high efficiency.


Asunto(s)
Células Madre Pluripotentes/citología , Resinas Acrílicas/química , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Medios de Cultivo/farmacología , Humanos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Polímeros/química , Poliestirenos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Vitronectina/genética , Vitronectina/metabolismo
8.
Eur J Dermatol ; 29(2): 126-140, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010797

RESUMEN

The treatment of difficult-to-treat wounds can be challenging. Although a number of approaches have been investigated, the healing process may be slow and unsatisfactory. An alternative approach is the use of a continuous sheet of skin cells applied over a wound which may improve cell implantation and patient recovery. To analyse the gene expression profile of fibroblast/keratinocyte co-culture on poly(tri[ethylene glycol] ethyl ether methacrylate) (P[TEGMA-EE]), a thermoresponsive biocompatible surface. Cultures were grown for 72 hours as a continuous layer on P(TEGMA-EE). Assays for genotoxicity, cell morphology, and fluorescence-assisted flow cytometry were performed to exclude adverse effects. A gene expression profile related to the extracellular matrix was investigated by microarray analysis. For fibroblast monocultures and fibroblast/keratinocyte co-cultures maintained for 72 hours on P(TEGMA-EE), no change in morphology or specific surface markers, or DNA damage (comet assay) was observed, relative to control surface. Moreover, no detrimental impact was ascertained based on microarray analysis. In response to lowered temperature, the detachment of a continuous cell layer sheet from the thermoresponsive surface was observed. When gene expression was compared between fibroblasts cultured alone and co-cultured with keratinocytes on P(TEGMA-EE), 10 genes were shown to be differentially expressed. Of these genes, six were significantly differentially expressed between cultures grown on P(TEGMA-EE) and human skin samples. Our results indicate that P(TEGMA-EE) is fully biocompatible and is therefore a suitable surface for successful preparation and recovery of two-layered fibroblast/keratinocyte co-culture as a continuous sheet of cells.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos/citología , Queratinocitos/citología , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/farmacología , Piel/citología , Células Cultivadas , Ensayo Cometa , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos
9.
Adv Drug Deliv Rev ; 138: 276-292, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30639258

RESUMEN

Cell transplantation is a promising approach for promoting tissue regeneration in the treatment of damaged tissues or organs. Although cells have conventionally been delivered by direct injection to damaged tissues, cell injection has limited efficiency to deliver therapeutic cells to the target sites. Progress in tissue engineering has moved scaffold-based cell/tissue delivery into the mainstream of tissue regeneration. A variety of scaffolds can be fabricated from natural or synthetic polymers to provide the appropriate culture conditions for cell growth and achieve in-vitro tissue formation. Tissue engineering has now become the primary approach for cell-based therapies. However, there are still serious limitations, particularly for engineering of cell-dense tissues. "Cell sheet engineering" is a scaffold-free tissue technology that holds even greater promise in the field of tissue engineering and regenerative medicine. Thermoresponsive poly(N-isopropylacrylamide)-grafted surfaces allow the fabrication of a tissue-like cell monolayer, a "cell sheet", and efficiently delivers this cell-dense tissue to damaged sites without the use of scaffolds. At present, this unique approach has been applied to human clinical studies in regenerative medicine. Furthermore, this thermally triggered cell manipulation system allows us to produce various types of 3D tissue models not only for regenerative medicine but also for tissue modeling, which can be used for drug discovery. Here, new cell sheet-based technologies are described including vascularization for scaled-up 3D tissue constructs, induced pluripotent stem (iPS) cell technology for human cell sheet fabrication and microfabrication for arranging tissue microstructures, all of which are expected to produce more complex tissues based on cell sheet tissue engineering.


Asunto(s)
Trasplante de Células , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Endometrio , Células Epiteliales , Femenino , Humanos , Hígado , Temperatura , Andamios del Tejido
10.
Biomaterials ; 153: 27-48, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29096399

RESUMEN

Thermoresponsive surfaces, prepared by grafting of poly(N-isopropylacrylamide) (PIPAAm) or its copolymers, have been investigated for biomedical applications. Thermoresponsive cell culture dishes that show controlled cell adhesion and detachment following external temperature changes, represent a promising application of thermoresponsive surfaces. These dishes can be used to fabricate cell sheets, which are currently used as effective therapies for patients. Thermoresponsive microcarriers for large-scale cell cultivation have also been developed by taking advantage of the thermally modulated cell adhesion and detachment properties of thermoresponsive surfaces. Furthermore, thermoresponsive bioseparation systems using thermoresponsive surfaces for separating and purifying pharmaceutical proteins and therapeutic cells have been developed, with the separation systems able to maintain their activity and biological potency throughout the procedure. These applications of thermoresponsive surfaces have been improved with progress in preparation techniques of thermoresponsive surfaces, such as polymerization methods, and surface modification techniques. In the present review, the various types of PIPAAm-based thermoresponsive surfaces are summarized by describing their preparation methods, properties, and successful biomedical applications.


Asunto(s)
Resinas Acrílicas/química , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Adhesión Celular , Humanos , Polimerizacion , Proteínas/aislamiento & purificación , Propiedades de Superficie
11.
ACS Appl Mater Interfaces ; 8(36): 23523-32, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552087

RESUMEN

A facile method to construct reversible thermoresponsive switching for bacteria killing and detachment was currently developed by host-guest self-assembly of ß-cyclodextrin (ß-CD) and adamantane (Ad). Ad-terminated poly(N-isopropylacrylamide) (Ad-PNIPAM) and Ad-terminated poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (Ad-PMT) were synthesized via atom transfer radical polymerization, and then assembled onto the surface of ß-CD grafted silicon wafer (SW-CD) by simply immersing SW-CD into a mixed solution of Ad-PNIPAM and Ad-PMT, thus forming a thermoresponsive surface (SW-PNIPAM/PMT). Atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and water contact angle (WCA) analysis were used to characterize the surface of SW-PNIPAM/PMT. The thermoresponsive bacteria killing and detachment switch of the SW-PNIPAM/PMT was investigated against Staphyloccocus aureus. The microbiological experiments confirmed the efficient bacteria killing and detachment switch across the lower critical solution temperature (LCST) of PNIPAM. Above the LCST, the Ad-PNIPAM chains on the SW-PNIPAM/PMT surface were collapsed to expose Ad-PMT chains, and then the exposed Ad-PMT would kill the attached bacteria. While below the LCST, the previously collapsed Ad-PNIPAM chains became more hydrophilic and swelled to cover the Ad-PMT chains, leading to the detachment of bacterial debris. Besides, the proposed method to fabricate stimuli-responsive surfaces with reversible switches for bacteria killing and detachment is facile and efficient, which creates a new route to extend the application of such smart surfaces in the fields requiring long-term antimicrobial treatment.


Asunto(s)
Bacterias , Resinas Acrílicas , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Polimerizacion , Polímeros , Temperatura
12.
Adv Healthc Mater ; 5(15): 1931-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27331769

RESUMEN

Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.


Asunto(s)
Astrocitos , Tejido Nervioso , Neuronas , Ingeniería de Tejidos/métodos , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Técnicas de Cocultivo/métodos , Humanos , Tejido Nervioso/citología , Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo
13.
Acta Biomater ; 25: 43-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26143602

RESUMEN

Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Polipropilenos/química , Ingeniería de Tejidos/métodos , Adsorción , Animales , Coloides/química , Fibrinógeno , Oro/química , Nanopartículas del Metal/química , Ratones , Células 3T3 NIH , Soluciones , Espectrofotometría Ultravioleta , Temperatura , Agua/química
14.
J Biomed Mater Res A ; 102(8): 2849-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24123718

RESUMEN

Thready stripe-polyacrylamide (PAAm) pattern was fabricated on a thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) surface, and their surface properties were characterized. A PIPAAm surface spin-coated with positive photoresist was irradiated through a 5 µm/5 µm or a 10 µm/10-µm black and white striped photomask, resulting in the radical polymerization of AAm on the photoirradiated area. After staining with Alexa488 bovine serum albumin, the stripe-patterned surface was clearly observed and the patterned surface was also observed by a phase contrast image of an atomic force microscope. NIH-3T3 (3T3) single cells were able to be cultured at 37°C on the patterned surfaces as well as on a PIPAAm surface without pattern, and the detachment of adhered cells was more rapidly from the patterned surface after reducing temperature. Furthermore, the rate of detachment of 3T3 confluent cell sheet on the patterned surface was accelerated, compared with on a conventional PIPAAm surface under the static condition. The rate control of cell sheet recovery should contribute the preservations of cell phenotype and biological functions of cell sheet for applying to clinical trials.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura , Resinas Acrílicas/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Recuento de Células , Ratones , Células 3T3 NIH , Propiedades de Superficie , Factores de Tiempo
15.
Sci Technol Adv Mater ; 11(1): 014111, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877326

RESUMEN

This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide) exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has developed cell sheet-based tissue engineering for therapeutic uses with single layer or multilayered cell sheets, which were recovered from the thermoresponsive cell culture dish. Using surface derivation techniques, we developed a new generation of thermoresponsive cell culture dishes to improve culture conditions. We also designed a new methodology for constructing well-defined organs using microfabrication techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA