Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095180

RESUMEN

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Modelos Químicos , Termodinámica , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/química , Material Particulado/análisis , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
2.
ACS Appl Mater Interfaces ; 16(33): 43860-43868, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105733

RESUMEN

Due to the atomic asymmetry, Janus transition metal dichalcogenide monolayers possess spontaneous curling and can even form one-dimensional nanoscrolls. Unveiling this spontaneous formation mechanism of nanoscrolls is of great importance for precise structural control. In this paper, we successfully simulate the process of Janus MoSSe nanoscroll formation from flat nanoribbons, based on molecular dynamics (MD) simulations with hybrid potentials. The spontaneous scrolling is purely driven by the relaxation of intrinsic strain in Janus MoSSe. The final structure of nanoscroll is strongly affected by the length of nanoribbon with a nonmonotonous relation. To further understand the mechanism, we establish a thermodynamic model to determine the inner radius of MoSSe nanoscrolls, which is shown to be related to spontaneous curvature, bending stiffness, interlayer van der Waals interaction, interlayer distance, and length of initial nanoribbon. The results correspond well with MD simulations of nanoscrolls from flat nanoribbons and the molecular static simulations of directly built nanoscrolls. Moreover, the inner radii of MoSeTe and MoSTe nanoscrolls are predicted based on the model. Our results provide insights into the Janus TMD nanoscroll formation and a pathway for controllable fabrication of nanoscrolls.

3.
J Chromatogr A ; 1731: 465156, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047442

RESUMEN

The single-component Mollerup model, with over 40 direct applications and 442 citations, is the most widely used activity model for chromatographic mechanistic modeling. Many researchers have extended this formula to multi-component systems by directly adding subscripts, a modification deemed thermodynamically inconsistent (referred to as the reference model). In this work, we rederived the asymmetric activity model for multi-component systems, using the van der Waals equation of state, and termed it the multi-component Mollerup model. In contrast to the reference model, our proposed model accounts for the contributions of all components to the activity. Three numerical experiments were performed to investigate the impact of the three different activity models on the chromatographic modeling. The results indicate that our proposed model represents a thermodynamically consistent generalization of the single-component Mollerup model to multi-component systems. This communication advocates adopting of the multi-component Mollerup model for activity modeling in multi-component chromatographic separation to enhance thermodynamic consistency.


Asunto(s)
Termodinámica , Modelos Químicos , Cromatografía/métodos , Modelos Teóricos
4.
Heliyon ; 10(11): e31800, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867954

RESUMEN

Pythium oligandrum, a soil-born oomycete, is an effective biological control agent exhibiting antagonistic and parasitic activity against pathogenic fungi. This study is the first attempt to characterize its surface properties and to apply models of physicochemical interactions (thermodynamic, DLVO and XDLVO) to quantify its adhesion properties to a model material, represented by magnetic beads (MB). The predictions of interaction models were based on experimental data (contact angles, zeta potentials, size). Adhesion intensities (AI) were determined experimentally taking advantage of MB with different surface properties. The role of weak physicochemical interactions was estimated by comparing experimental AI with model predictions. The results revealed that the surface properties of the three Pythium spp. studied were very similar and fell within the range for hydrophilic microorganisms (ΔGTOT > 0) with a predominantly negative surface charge. The most reliable description of AI was obtained using the DLVO model, including Lifshitz-van der Waals and electrostatic interactions. The highest AI between Pythium spp. and all three MB was observed at pH 3, which was supported by the DLVO prediction. The greater agreement between the sphere-sphere geometric version of the DLVO model and experiment suggests that the surface protrusions of the oospores increase the efficiency of adhesion. The surface properties of the pathogenic fungi, characterized in this work, fell within the range defined by MB and therefore it can be expected that their physicochemical interactions with Pythium spp. will also be favourable.

5.
Elife ; 122024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836839

RESUMEN

New experimental findings continue to challenge our understanding of protein allostery. Recent deep mutational scanning study showed that allosteric hotspots in the tetracycline repressor (TetR) and its homologous transcriptional factors are broadly distributed rather than spanning well-defined structural pathways as often assumed. Moreover, hotspot mutation-induced allostery loss was rescued by distributed additional mutations in a degenerate fashion. Here, we develop a two-domain thermodynamic model for TetR, which readily rationalizes these intriguing observations. The model accurately captures the in vivo activities of various mutants with changes in physically transparent parameters, allowing the data-based quantification of mutational effects using statistical inference. Our analysis reveals the intrinsic connection of intra- and inter-domain properties for allosteric regulation and illustrate epistatic interactions that are consistent with structural features of the protein. The insights gained from this study into the nature of two-domain allostery are expected to have broader implications for other multi-domain allosteric proteins.


Asunto(s)
Mutación , Proteínas Represoras , Termodinámica , Regulación Alostérica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Dominios Proteicos , Modelos Moleculares
6.
Methods Mol Biol ; 2726: 105-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780729

RESUMEN

The structure of an RNA sequence encodes information about its biological function. Dynamic programming algorithms are often used to predict the conformation of an RNA molecule from its sequence alone, and adding experimental data as auxiliary information improves prediction accuracy. This auxiliary data is typically incorporated into the nearest neighbor thermodynamic model22 by converting the data into pseudoenergies. Here, we look at how much of the space of possible structures auxiliary data allows prediction methods to explore. We find that for a large class of RNA sequences, auxiliary data shifts the predictions significantly. Additionally, we find that predictions are highly sensitive to the parameters which define the auxiliary data pseudoenergies. In fact, the parameter space can typically be partitioned into regions where different structural predictions predominate.


Asunto(s)
Algoritmos , Biología Computacional , Conformación de Ácido Nucleico , ARN , Termodinámica , ARN/química , ARN/genética , Biología Computacional/métodos , Programas Informáticos
7.
Materials (Basel) ; 17(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38541408

RESUMEN

The burning loss of Al and Ti elements in superalloys during electroslag remelting has become a prevalent issue. And the existing slag system is not suitable for smelting the ATI 718PlusTM alloy. Therefore, it is imperative to develop a new slag system for smelting the ATI 718PlusTM alloy. To mitigate this issue, a thermodynamic model of the oxidation reaction of Al and Ti at the slag and alloy interface was established based on the ion and molecule coexistence theory (IMCT). The thermodynamic model was used to investigate the correlation between the equilibrium content of Al and Ti, slag composition, smelting temperature, and initial Al and Ti content of the electrode. The results indicate that while increasing the smelting temperature can effectively inhibit the burning loss of Al, it will exacerbate the burning loss of Ti. Increasing CaO and Al2O3 contents can inhibit the Al burning loss, while an increase in the TiO2 content can inhibit the Ti burning loss. Although an increase in the MgO content results in the burning loss of Al, its impact on the Al is minimal. The burning loss of Al and Ti was not affected by the change in the CaF2 content. The high Al content in ATI 718PlusTM makes it prone to burning loss of Al during the electroslag remelting. The combustion loss of Al can be reduced by increasing the Ti content in the electrode or adding a suitable amount of aluminum powder to the slag system. The accuracy of the model had been validated through experimental verification.

8.
J Pharm Biomed Anal ; 241: 115998, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330784

RESUMEN

L-α-glyceryl phosphorylcholine, also referred to as choline ethanol phosphate and phosphocholine glycerophosphate, is a naturally occurring metabolite of water-soluble phospholipids in animals. This molecular property is important for informing the crystallization and purification of drugs. The solubility of L-α-glyceryl phosphorylcholine was determined in ten pure solvents and three mixed solvents under atmospheric pressure. The experimental results indicate that L-α-glyceryl phosphorylcholine is most soluble in methanol and least soluble in acetone. Additionally, the solubility of L-α-glyceryl phosphorylcholine was found to increase with temperature within the experimental range. Furthermore, the solubility of L-α-glyceryl phosphorylcholine in binary solvents is dependent on the proportion of positive solvent and temperature. The solubility of L-α-glyceryl phosphorylcholine increases with the proportion of positive solvent. XRD and DSC results indicate that the crystal form of L-α-glyceryl phosphorylcholine remains unchanged before and after dissolution in the reagent, and its melting point temperature is 413.15 K. Various models, including the modified Apelblat model, λh model, Jouyban-Acree model, SUN model, and CNIBS/R-K model, were used to fit the solubility data of L-α-glyceryl phosphorylcholine in different solvents. The study found that the modified Apelblat model and CNIBS/R-K model were the most appropriate for fitting the data. The KAT-LSER model was used to analyze the molecular interactions between solvents and solutes, revealing that the solvent step method with non-specific polarity/polarization interaction had the greatest impact on solubility.


Asunto(s)
Glicerilfosforilcolina , Fosforilcolina , Solubilidad , Solventes/química , Termodinámica , Agua/química
9.
J Hazard Mater ; 458: 131970, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399728

RESUMEN

Air quality in ammonia-rich regions such as Zhengzhou is improving year by year, however, fine particulate matter (PM2.5) pollution is serious in winter. Aerosol acidity (pH) affects every aspect of the surrounding particle composition and environment. Thermodynamic models of gaseous and particulate composition datasets can provide pH estimates. Nevertheless, for ammonia-rich regions in the presence of prolonged NH3 deficiency, the thermodynamic model is limited in calculating pH by using only datasets composed of the particulate phase. In this study, an NH3 concentration calculation method was established via SPSS-coupled multiple linear regression to simulate the trend of NH3 concentration over a long period of time and to assess the long-term pH value in ammonia-rich regions. The reliability of this method was verified using multiple models. The range of NH3 concentration change from 2013 to 2020 was found to be 4.3-68.6 µg·m-3, and the range of pH change was 4.5-6.0. The pH sensitivity analysis indicated that decreasing aerosol precursor concentrations and variations in temperature and relative humidity were the driving factors for aerosol pH changes. Therefore, policies to reduce NH3 emissions are becoming increasingly necessary. This study provides a feasibility analysis for reducing PM2.5, thus achieving standards in ammonia-rich regions, including Zhengzhou.

10.
J Liposome Res ; 33(4): 392-409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37171257

RESUMEN

The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.


Asunto(s)
Liposomas , Temperatura , Concentración de Iones de Hidrógeno , Termodinámica
11.
Sci Total Environ ; 854: 158721, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108829

RESUMEN

The nutrient recovery from source-separated urine is of great significance for a sustainable and closed nutrient loop. However, common urine-processing techniques have several constraints, including inefficient recovery, low product purity and incapability of simultaneously harvesting multiple nutrients. In this study, an integrated strategy of P precipitation and N stripping was first proposed to harvest nutrients from hydrolyzed human urine as high-purity products via precisely regulating Ca/P dosing ratio. Ca(OH)2 was utilized to trigger Ca-P precipitation and elevate pH level. Different from the previously reported conventional struvite method, P recovery was oriented to calcium phosphate. P harvesting behavior was investigated as a function of key factors including initial P concentration and the dosing ratio. A thermodynamic model was constructed to unveil the precipitation transformation mechanism and visualize P recovery for an enhanced controllability. For N harvesting, Ca(OH)2 was dosed to increase the pH of the urine to converts ammonium to ammonia. The resulting ammonia was stripped and then adsorbed by H2SO4 as high-purity ammonium sulfate. Moreover, the sulfate derived from acidification treatment was recovered as calcium sulfate in the interests of material recycling and mitigating secondary contaminations. Results exhibited P recovery efficiency could reach 100 % and purity for calcium phosphate could be above 90 % within a Ca/P ratio range of 1.67-2.0. Further boosting pH to 12, over 85 % of S and 95 % of N was retrieved. The comprehensive scheme provides an efficient approach towards the precise P and N harvesting from hydrolyzed urine and advances the knowledge of precipitation transformation mechanism.


Asunto(s)
Amoníaco , Fosfatos , Humanos , Fósforo , Nitrógeno , Estruvita , Nutrientes , Fosfatos de Calcio , Orina , Precipitación Química
12.
ACS Nano ; 16(12): 21636-21644, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36468911

RESUMEN

Although broad consensus exists that photoirradiation of mixed-halide lead perovskites leads to anion segregation, no model today fully rationalizes all aspects of this near ubiquitous phenomenon. Here, we quantitatively compare experimental, CsPb(I0.5Br0.5)3 nanocrystal (NC) terminal anion photosegregation stoichiometries and excitation intensity thresholds to a band gap-based, thermodynamic model of mixed-halide perovskite photosegregation. Mixed-halide NCs offer strict tests of theory given physical sizes, which dictate local photogenerated carrier densities. We observe that mixed-anion perovskite NCs exhibit significant robustness to photosegregation, with photosegregation propensity decreasing with decreasing NC size. Observed size- and excitation intensity-dependent photosegregation data agree with model predicted size- and excitation intensity-dependent terminal halide stoichiometries. Established correspondence between experiment and theory, in turn, suggests that mixed-halide perovskite photostabilities can be predicted a priori using local gradients of (empirical) Vegard's law expressions of composition-dependent band gaps.

13.
Water Res ; 227: 119325, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371917

RESUMEN

Phosphorus (P) harvesting from source-separated urine to optimize the overall nutrient loop is one of the most appealing benefits and is a global research interest in wastewater management and treatment. However, current P precipitation is mainly oriented to struvite, which is limited by the issues such as relatively low product purity and high cost of Mg source. Distinguished from previous conventional struvite precipitation, the strategy of precisely harvesting P from fresh human urine as high-purity calcium phosphate was first proposed in this study. This enhanced strategy can optimize P harvesting performance and product purity by simply regulating the consumption of calcium-based materials via model simulation and experimental validation. The thermodynamic model was constructed to probe the precipitation conversion mechanism, and visually predict the component and yield for products under various operating conditions. Batch experiments were conducted to investigate P recovery performance as a function of initial Mg2+ concentration, initial pH level, as well as degree of urine hydrolysis. Moreover, the alternative dosing scheme with different calcium salts and alkali was presented, diversifying the options for efficient P recovery. The results showed that, from the perspective of acidic storage for fresh urine, P recovery can be boosted along with eliminating urine hydrolysis. In urine with an initial pH=2.0, P can be completely recovered and purity for calcium phosphate can be optimized to 100% within a Ca/P ratio range of 1.67-2.3. Overall, this work is of great significance for precisely and efficiently harvesting P from urine and provides an integrated strategy for P resource recovery from urine.


Asunto(s)
Fosfatos , Fósforo , Humanos , Fósforo/orina , Estruvita , Calcio , Compuestos de Magnesio , Fosfatos de Calcio , Precipitación Química
14.
3 Biotech ; 12(11): 293, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276450

RESUMEN

The removal of protein charge variants due to complex chemical and enzymatic modifications like glycosylation, fragmentation and deamidation presents a significant challenge in the purification of monoclonal antibodies (mAb) and complicates downstream processing. These protein modifications occur either in vivo or during fermentation and downstream processing. The presence of charge variants can lead to diminished biological activity, differences in pharmacokinetics, pharmacodynamics, stability and efficacy. Therefore, these different product variants should be appropriately controlled for the consistency of product quality and to ensure patient safety. This investigation focuses on the development of a chromatography step for the removal of the charge variants from a recombinant single-chain variable antibody fragment (scFv-Fc-Ab). Poly(ethyleneimine)-grafted cation-exchange resins (Poly CSX and Poly ABX) were evaluated and compared to traditional macroporous cation-exchange and tentacle cation-exchange resins. Linear salt gradient experiments were conducted to study the separation efficiency of scFv-Fc-Ab variants using different resins. A classical thermodynamic model was used to develop a mechanistic understanding of the differences in charge variant retention behaviour of different resins. High selectivity in separation of scFv-Fc-Ab charge variants is obtained in the Poly CSX resin.

15.
Entropy (Basel) ; 24(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36010787

RESUMEN

In the current studies, the supercritical carbon dioxide coal-fired power generation systems show efficiency and cost advantages over the traditional steam-based power systems. However, few studies have considered simultaneously environmental and economic objectives in the multi-objective analysis process. This study conducts a layout comparison and parameter optimization of the systems under the above two objectives. Initially, the thermodynamic, environmental, and economic models of the systems are established. Subsequently, the optimal layout is determined by the two-stage layout comparison. Further, multi-objective optimization is performed for the selected layout, and the optimal design parameters are determined by the decision process. Finally, the sensitivities of three selected parameters to the optimization results are analyzed. The results show that the basic layout coupled with overlap and intercooling schemes is optimal. Its ultimate environmental impact (UEI) and levelized cost of electricity (LCOE) are 219.8 kp-eq and 56.9 USD/MWh, respectively. The two objectives UEI and LCOE are conflicting. Based on a trade-off between them, the maximum temperature/pressure of the system is determined to be 635.3 °C/30.1 MPa. The coal price per unit of heat shows the highest sensitivity, and the pinch temperature difference of the recuperator shows opposite sensitivities at the UEI below 218 kp-eq and above 223 kp-eq.

16.
Curr Oncol Rep ; 24(7): 875-887, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35325402

RESUMEN

PURPOSE OF REVIEW: Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM. RECENT FINDINGS: The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is largely observational. Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperthermia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.


Asunto(s)
Hipertermia Inducida , Neoplasias Peritoneales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Procedimientos Quirúrgicos de Citorreducción , Humanos , Hipertermia Inducida/métodos , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Peritoneales/terapia
17.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35263731

RESUMEN

We report on the influence of the liquid droplet composition on the Sn incorporation in GeSn nanowires (NWs) grown by the vapor-liquid-solid (VLS) mechanism with different catalysts. The variation of the NW growth rate and morphology with the growth temperature is investigated and 400 °C is identified as the best temperature to grow the longest untapered NWs with a growth rate of 520 nm min-1. When GeSn NWs are grown with pure Au droplets, we observe a core-shell like structure with a low Sn concentration of less than 2% in the NW core regardless of the growth temperature. We then investigate the impact of adding different fractions of Ag, Al, Ga and Si to Au catalyst on the incorporation of Sn. A significant improvement of Sn incorporation up to 9% is obtained using 75:25 Au-Al catalyst, with a high degree of spatial homogeneity across the NW volume. Thermodynamic model based on the energy minimization at the solid-liquid interface is developed, showing a good correlation with the data. These results can be useful for obtaining technologically important GeSn material with a high Sn content and, more generally, for tuning the composition of VLS NWs in other material systems.

18.
Molecules ; 27(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35056868

RESUMEN

The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.


Asunto(s)
Geles/química , Proteínas/química , Seda/química , Agua/química , Animales , Bombyx , Fenómenos Químicos , Dispersión Dinámica de Luz , Fibroínas/química , Agregado de Proteínas , Sales (Química) , Dispersión del Ángulo Pequeño , Solubilidad , Espectrofotometría Infrarroja , Espectroscopía Infrarroja Corta , Temperatura
19.
Life (Basel) ; 12(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35054516

RESUMEN

Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.

20.
Chemosphere ; 289: 133155, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34875290

RESUMEN

The Indo-Gangetic Plain (IGP) has high wintertime fine aerosol loadings that significantly modulate the widespread fog formation and sustenance. Here, we investigate the potential formation of secondary inorganic aerosol driven by excess ammonia during winter fog. Physicochemical properties of fine aerosols (PM1 and PM2.5) and trace gases (HCl, HONO, HNO3, SO2, and NH3) were simultaneously monitored at hourly resolution using Monitor for AeRosols and Gases in Ambient air (MARGA-2S) for the first time in India. Results showed that four major ions, i.e., Cl-, NO3-, SO42-, and NH4+ contributed approximately 97% of the total measured inorganic ionic mass. The atmosphere was ammonia-rich in winter and ammonium was the dominant neutralizer with aerosol neutralization ratio (ANR) close to unity. The correlation between ammonium and chloride was ≥0.8, implying the significant formation of ammonium chloride during fog in Delhi. Thermodynamical model ISORROPIA-II showed the predicted PM1 and PM2.5 pH to be 4.49 ± 0.53, and 4.58 ± 0.48 respectively which were in good agreement with measurements. The ALWC increased from non-foggy to foggy periods and a considerable fraction of fine aerosol mass existed in the supermicron size range of 1-2.5 µm. The sulfur oxidation ratio (SOR) of PM1, PM2.5 reached up to 0.60, 0.75 in dense fog and 0.74, 0.87 when ambient RH crossed a threshold of 95%, much higher than non-foggy periods (with confidence level of ≥95%) pointing to enhanced formation of secondary aerosol in fog.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Amoníaco , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA