Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Heliyon ; 10(17): e37105, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296224

RESUMEN

The management of solid waste poses a worldwide obstacle in the pursuit of a sustainable society. This issue has intensified with the increase in waste production caused by rapid population expansion, industrialization, and urbanization. The continuously growing volume of municipal solid waste, particularly the substantial volume of organic waste, along with improper disposal practices, results in the release of greenhouse gases and other harmful airborne substances which simultaneously causes health risks and socioeconomic concerns. This article examines various waste-to-energy (energy production in the form of heat and electricity) concepts as well as waste-to-materials (various value-added materials including biofuel, biochemical, char, bio-oil, soil fertilizer, etc.) methods of converting municipal solid waste into environmentally friendly fuels, which appear to be economically feasible and attractive. It starts with a thorough analysis of the characteristics of municipal solid waste followed by the generation procedure. The study provides an overview of different thermochemical conversion methods including incineration, pyrolysis, co-pyrolysis, liquefaction, hydrothermal carbonization, gasification, combustion for transformation of municipal solid waste, and their recent advancement. The review comprehensively discussed the pros and cons of each method highlighting their strength, weakness, opportunities, and threats to transforming MSW. The current state of municipal solid waste management, including effective dumping and deviation, is comprehensively assessed, along with the prospects and challenges involved. Energy justice concepts and fuzzy logic tool is used to address the selection criteria for choosing the best waste treatment techniques. Moreover, several recommendations are offered to enhance the existing solid waste management system. This review could assist scholars, researchers, authorities, and stakeholders in making informed decisions regarding MSW management.

2.
J Mol Model ; 30(10): 339, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287820

RESUMEN

CONTEXT: Ammonium Tutton salts have been widely studied in recent years due to their thermostructural properties, which make them promising compounds for application in thermochemical energy storage devices. In this work, a detailed experimental study of the Tutton salt with the formula (NH4)2Zn(SO4)2(H2O)6 is carried out. Its structural, vibrational, and thermal properties are analyzed and discussed. Powder X-ray diffraction (PXRD) studies confirm that the compound crystallizes in a structure of a Tutton salt, with monoclinic symmetry and P21/a space group. The Hirshfeld surface analysis results indicate that the main contacts stabilizing the material crystal lattice are H···O/O···H, H···H, and O···O. In addition, a typical behavior of an insulating material is confirmed based on the electronic bandgap calculated from the band structure and experimental absorption coefficient. The Raman and infrared spectra calculated using DFT are in a good agreement with the respective experimental spectroscopic results. Thermal analysis in the range from 300 to 773 K reveals one exothermic and several endothermic events that are investigated using PXRD measurements as a function of temperature. With increasing temperature, two new structural phases are identified, one of which is resolved using the Le Bail method. Our findings suggest that the salt (NH4)2Zn(SO4)2(H2O)6 is a promising thermochemical material suitable for the development of heat storage systems, due to its low dehydration temperature (≈ 330 K), high enthalpy of dehydration (122.43 kJ/mol of H2O), and hydration after 24 h. METHODS: Computational studies using Hirshfeld surfaces and void analysis are conducted to identify and quantify the intermolecular contacts occurring in the crystal structure. Furthermore, geometry optimization calculations are performed based on density functional theory (DFT) using the PBE functional and norm-conserving pseudopotentials implemented in the Cambridge Serial Total Energy Package (CASTEP). The primitive unit cell optimization was conducted using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The electronic properties of band structure and density of states, and vibrational modes of the optimized crystal lattice are calculated and analyzed.

3.
ChemSusChem ; : e202401295, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148488

RESUMEN

Solar thermochemical CO2 splitting using metal oxides is considered as a promising approach to produce solar fuels since it is capable to tap abundant sunlight directly and store solar energy in the renewable fuel. It remains a grand challenge to achieve highly efficient CO2 splitting at low temperature (<800 oC) due to insufficient activation of metal oxides for CO2.Herein, the introduction of a small amount of Pt was found to be able to greatly increase the performance of CO2 splitting with the highest peak CO production rate of about 65 mL min-1 g-1, CO productivity of about 53 mL g-1, nearly 100% CO2 conversion and long-term stability for 0.5Pt/CeO2 which exceeded most of the state-of-the-art transition metals-based oxides even at lower temperature (700 oC). This could be attributed to the addition of Pt leading to the formation of an interface (Pt0-Ov-Ce3+) after CH4 reduction, which improved CO2 activation and dissociation due to beneficial breakage of C=O bond by the cooperation of Pt0 and oxygen vacancies in the interface.

4.
Bioresour Technol ; 409: 131240, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122129

RESUMEN

To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.


Asunto(s)
Aspergillus niger , Técnicas de Cocultivo , Zea mays , Zea mays/química , Aspergillus niger/metabolismo , Agua/química , Rhodococcus/metabolismo , Ácido Oxálico , Análisis de la Demanda Biológica de Oxígeno , Fermentación , Biomasa , Hongos/metabolismo , Biocombustibles
5.
Bioresour Technol ; 412: 131279, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151568

RESUMEN

Hydrothermal carbonization (HTC) emerged as an effective technology for the treatment of various types of wet biomass and organic residues, including sewage sludge, offering the potential for sludge reduction and resource recovery. HTC pretreatment impact on downstream sludge fermentation is investigated. Results obtained at optimal conditions for HTC pretreatment (170 °C for 30 min) indicated that soluble carbon was significantly increased in the liquid fraction, enhancing feedstock availability for fermentation. Semi-continuous fermentation of HTC-treated sludge resulted in a stable process in which a mixed microbial community produced volatile fatty acids (VFAs) with longer chain acids content, acidification yield of 0.59 ± 0.05 g COD-VFA g-1 CODin and volumetric productivity of 1.6 ± 0.5 g COD-VFA L-1 d-1. Biomethane Potential tests evidenced high values for hydrochar. Overall, the HTC pretreatment enables improved conversion efficiencies, in the view of valorizing the liquid for VFA synthesis and the hydrochar for biomethane production.


Asunto(s)
Carbono , Ácidos Grasos Volátiles , Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo , Anaerobiosis , Fermentación , Reactores Biológicos , Temperatura , Biocombustibles , Agua/química
6.
Polymers (Basel) ; 16(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39204554

RESUMEN

This paper explores the intricate relations between biomass polymeric composition, thermochemical conversion routes, char yields and features in order to advance the knowledge on biomass conversion processes and customize them to meet specific requirements. An exhaustive characterization has been performed for three types of biomasses: (i) spruce bark, a woody primary and secondary residue from forestry and wood processing; (ii) wheat straws-agricultural waste harvest from arable and permanent cropland; and (iii) vine shoots, a woody biomass resulting from vineyard waste. Chemical (proximate and ultimate analysis), biochemical, trace elements, and thermal analyses were performed. Also, Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and thermogravimetric analysis were conducted to establish the compositional and structural characteristics of feedstock. The main polymeric components influence the amount and quality of char. The high hemicellulose content recommends wheat straws as a good candidate especially for hydrothermal carbonization. Cellulose is a primary contributor to char formation during pyrolysis, suggesting that vine shoots may yield higher-quality char compared to that converted from wheat straws. It was shown that the char yield can be predicted and is strongly dependent on the polymeric composition. While in the case of spruce bark and wheat straws, lignin has a major contribution in the char formation, cellulose and secondary lignin are main contributors for vine shoots char.

7.
J Cannabis Res ; 6(1): 33, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080738

RESUMEN

Cannabinoid decarboxylation via thermo-chemical conversion has the potential to reduce the cannabinoid degradation and evaporation due to short reaction time and use of water as the solvent. When combined with pressurized liquid extraction (PLE), thermo-chemical conversion can be performed as the first stage in the extraction procedure. PLE utilizes a closed system at elevated temperatures and pressure to increase the solvation power, which contributes to decreased viscosity and increased diffusion rate. With this new in-extraction decarboxylation approach there remain variables that need full understanding before up scaling from bench top to pilot or commercial scale. Herein, the thermo-chemical decarboxylation kinetics was studied for industrial hemp via PLE at different temperatures (80-160 °C) and reaction times (1-90 min). The reaction was found to be pseudo-first order. Model verification on CBD and CBG resulted in acceptable results; however, an anomaly in the minor cannabinoids suggests that cannabinoid concentration may influence model kinetics.

8.
Sci Total Environ ; 948: 174848, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029754

RESUMEN

Amidst growing global demand for leather goods, the efficient conversion of rawhide and skins into durable leather is crucial, yet approximately 80 % of these materials become solid and liquid waste during tannery operations. Improper management of tannery solid waste poses significant environmental risks, contaminating soil, groundwater, and surface water. This review explores thermochemical, biological, and phytoremediation methods for treating tannery solid waste, emphasizing their role in resource recovery and environmental sustainability. Thermochemical techniques like pyrolysis and gasification convert tannery solid waste into biochar, bio-oil, and syngas, which serve as soil amendments, renewable energy sources, or industrial feedstocks. Biological methods such as composting and anaerobic digestion decompose organic tannery solid waste components into nutrient-rich compost and biogas. Phytoremediation uses plants to remediate contaminants, including heavy metals, from tannery solid waste. These methods mitigate environmental pollution and support the leather industry's transition to sustainable practices, crucial for compliance with global regulations. Moreover, the review offers insights into current efforts and perspectives aimed at achieving a zero-waste policy, emphasizing the importance of a circular economy to alleviate the environmental burden associated with tannery operations and ensure their continued sustainability. Finally, a detailed discussion on the current challenges in terms of technology accessibility and economic feasibility was also discussed.

9.
Environ Pollut ; 358: 124516, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986764

RESUMEN

The escalating volume of sewage sludge (SS) generated poses challenges in disposal, given its potential harm to the environment and human health. This study explored sustainable solutions for SS management with a focus on energy recovery. Employing CO2-assisted pyrolysis, we converted SS into flammable gases (H2 and CO; syngas). Single-stage pyrolysis of SS in a CO2 conditions demonstrated that CO2 enhances flammable gas production (especially CO) through gas phase reactions (GPRs) with volatile matter (VM) at temperatures ≥520 °C. Specifically, the CO2 partially oxidized the VM released from SS and concurrently underwent reduction into CO. To enhance the syngas production at temperatures ≤520 °C, multi-stage pyrolysis setup with additional heat energy and a Ni/Al2O3 catalyst were utilized. These configurations significantly increased flammable gas production, particularly CO, at temperatures ≤520 °C. Indeed, the flammable gas yield in the catalytic pyrolysis of SS increased from 200.3 mmol under N2 conditions to 219.2 mmol under CO2 conditions, representing a 4.4-fold increase compared to single-stage pyrolysis under CO2 conditions (50.0 mmol). By integrating a water-gas-shift reaction, the flammable gases produced from CO2-assisted catalytic pyrolysis were expected to have the potential to generate revenue of US$4.04 billion. These findings highlight the effectiveness of employing CO2 in SS pyrolysis as a sustainable and effective approach for treating and valorising SS into valuable energy resources.


Asunto(s)
Dióxido de Carbono , Pirólisis , Aguas del Alcantarillado , Dióxido de Carbono/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Catálisis , Calor , Monóxido de Carbono
10.
Heliyon ; 10(12): e32915, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994073

RESUMEN

In this study, we report the synthesis of graphene-like carbon derived from onion husk, with potential application as an electrode material in energy storage devices. Graphene-like carbon (GLC) was synthesized from onion husk (OH) by preliminary carbonization at 550 °C, followed by thermochemical activation at various temperatures to determine the optimal activation parameters. The surface morphology of graphene-like carbon from onion husk (GLC-OH) samples after carbonization shows distinct thermal exfoliation of the material. This layering upon activation in KOH promotes the formation of highly porous graphene-like carbon flakes. According to the Brunauer-Emmett-Teller (BET) method, the specific surface area at 850 °C was 1924 m2/g. The X-ray diffraction (XRD) and Raman spectroscopy results reveal the emergence of few-layer graphene with a significant amount of structural defects at 850 °C. As the temperature increases, the formation shifts towards multilayer graphene, which leads to a decrease in the specific surface area of the carbon material. The electrochemical characterization of the assembled GLC-OH-based supercapacitor synthesized at 850 °C revealed a markedly higher specific capacitance value of 131 F/g, along with a Coulombic efficiency of 98 % at a gravimetric current density of 1 A/g. Additionally, it exhibited a low charge transfer resistance (RCT) of approximately 1.4 Ω. Our study investigates the influence of structural changes on the electrochemical performance of biomass-derived activated carbon, highlighting the potential of graphene-like carbon from onion husk as a promising and low-cost material for future energy storage devices.

11.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998286

RESUMEN

Today, there are many diagnostic methods and advanced measurement techniques enabling the correct diagnosis and assessment of the type and degree of wear of cogwheels (gears, pumps, etc.). The present study presents an analysis of the surface defects of a cogwheel of an oil pump prototype (3PW-BPF-24). The test object operated for a certain number of hours under controlled operating and environmental parameters. The damage to the surface layer was caused by fatigue phenomena and previous thermo-chemical treatment. On the basis of the significant percentage share (~30%) of residual austenite in the volume of the diffusion layer, a hypothetical conclusion was drawn about the suboptimal parameters of the thermo-chemical treatment process (in relation to the chemical composition of the analyzed pinion). A large number of research studies indicate that the significant presence of residual austenite causes a decrease in tooth surface hardness, the initiation of brittle cracks, a sharp decrease in fatigue strength, an increase in brittleness and a tendency to develop surface layer cracks during operation. High-resolution 3D scans of randomly selected pitting defects were used in the detailed study of the present work. It was indicated that the analysis of the morphology of surface defects allowed some degree of verification of the quality of the heat/chemical treatment. The martensitic transformation of residual austenite under controlled (optimum) repeated heat treatment conditions could significantly improve the durability of the pinion (cogwheel). In the case analyzed, the preferred treatment was the low-temperature treatment. The paper concludes with detailed conclusions based on the microscopic and macroscopic investigations carried out.

12.
Bioresour Technol ; 406: 131058, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971389

RESUMEN

Previous research on Char reactions with gas phase compounds under micro-thermogravimetry systems shows that hydrogen inhibits heterogeneous char reactions. However, its impact on larger gasification systems with evolving hydrogen profiles remains largely unexplored. This study examines a macro-scale wood char bed to understand the influence of in situ evolving hydrogen on char reactions. When subjected to a specific steam flux, carbon conversion and pore morphology changes are mainly confined to the bed's upstream, with the downstream char retaining its original characteristics. Numerical investigations reveal over 75 % of species production and consumption occurs within the initial 20 % of bed height. Fourier-transform infrared spectroscopy confirms hydrogen-induced inhibition in downstream segments, showing a shift from C-OH to C-H bonds. Particle-scale analysis indicates significantly higher rates of hydrogen diffusion and adsorption compared to H2O, impeding downstream C+H2O reactions. Increased temperature, higher reactant concentrations, or reduced residence time can overcome this inhibition, enhancing conversion rates. These findings are critical for optimizing steam-to-biomass ratios in oxy-steam gasification systems for generating hydrogen-rich syngas.


Asunto(s)
Carbono , Hidrógeno , Agua , Madera , Hidrógeno/química , Madera/química , Carbono/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Carbón Orgánico/química , Vapor , Temperatura
13.
Sci Total Environ ; 945: 173977, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879018

RESUMEN

This study was conceived with the aim of exploring applications of the circular economy (CE) principles in the olive oil sector, with the lens of Life Cycle Assessment (LCA). To that end, the authors performed a systematic literature review (SLR), from a pre-determined set of keywords that were searched for in the two most comprehensive databases of peer-reviewed journals, namely Scopus and Web-of-Science. From the screening process provided by the PRISMA model, a total of fifteen papers were selected that formed the final review sample, most of which included research on production systems in the Mediterranean region. To facilitate a comparative analysis of the findings from those studies, the latter were grouped into clusters, considering their characteristics and methodological approaches. Five articles were classified as dealing with 'closed-loop' systems wherein the resources from the valorisation of by-products were reintegrated into the same production system. The remaining articles were categorised as related to 'open loop' systems since by-products were utilised in processes and systems outside olive oil production. Notably, the 'closed-loop' systems showed the best LCA outcomes. Identified hotspots within the sector included the agricultural and packaging phases. Although comparing LCA applications is challenging due to the inherent nature of the method and researcher autonomy in selecting basic characteristics, valuable best practices emerged from the analysis of the current state of the art. These practices included valorisation of olive pomace (OP) by converting it into biogas to meet the energy needs of the system processes themselves, the collection of waste cooking oil to convert it into biodiesel, and the use of organic farming techniques in olive production. OP oil extraction emerged as a widespread practice enhancing system sustainability. Moreover, increasing industrial symbiosis by promoting proximity amongst plants was documented by this SLR to be a key factor in strengthening system sustainability.


Asunto(s)
Aceite de Oliva , Agricultura/métodos
14.
ACS Appl Mater Interfaces ; 16(26): 33270-33284, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38896815

RESUMEN

In this work, the Na2CO3 of the sodium manganese ferrite thermochemical cycle was substituted by different eutectic or eutectoid alkali carbonate mixtures. Substituting Na2CO3 with the eutectoid (Li0.07Na0.93)2CO3 mixture resulted in faster hydrogen production after the first cycle, shifting the hydrogen production maximum toward shorter reaction times. Thermodynamic calculations and in situ optical microscopy attributed this fact to the partial melting of the eutectoid carbonate, which helps the diffusion of the ions. Unfortunately, all the mixtures exhibit a significant loss of reversibility in terms of hydrogen production upon cycling. Among them, the nonsubstituted Na mixture exhibits the highest reversibility in terms of hydrogen production followed by the 7%Li-Na mixture, while the 50%Li-Na and Li-K-Na mixtures do not produce any hydrogen after the first cycle. The loss of reversibility is attributed to both the formation of undesired phases and sintering, the latter being more pronounced in the eutectic and eutectoid alkali carbonate mixtures, where the melting of the carbonate is predicted by thermodynamics.

15.
Chem Asian J ; 19(17): e202400307, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38880993

RESUMEN

The substantial rise in global energy demand, propelled by industrial expansion, population growth, and transportation needs, poses a formidable challenge. The concurrent urbanization places pressure on the disposal of solid municipal solid waste and the management of plastic waste. Addressing the global waste crisis requires innovative and sustainable garbage disposal solutions with an environmentally friendly approach. This review tackles the challenges of worldwide waste management, focusing on renewable and sustainable fuels and waste recycling through the exploration of co-pyrolysis as an innovative method. It explores the characteristics and environmental impact of municipal solid waste (MSW) and plastic waste (PW), delving into pyrolysis fundamentals, processes, and challenges. The primary emphasis is on co-pyrolysis, elucidating its integration of municipal and plastic waste, synergistic effects, and advantages. The manuscript thoroughly analyzes reaction kinetics, thermodynamics, and the feasibility of co-pyrolysis for energy recovery. It also delves into the synthesis of renewable fuels and valuable chemical intermediates, considering optimization of product distribution. Environmental and economic sustainability aspects, including impact assessment, greenhouse gas emissions, life cycle analysis, and cost analysis of co-pyrolysis processes, are comprehensively investigated. The review underscores the economic benefits of renewable fuel and chemical materials synthesis. The conclusion addresses challenges, proposes future directions, outlines limitations, technical challenges, environmental considerations, and recommends further exploration and integration with other waste management techniques. The manuscript emphasizes the ongoing importance of research in this critical field, aiming to contribute to the development of effective solutions for the escalating global waste management crisis.

16.
Sci Total Environ ; 941: 173701, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844232

RESUMEN

Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38698092

RESUMEN

Alkali activated materials (AAMs) commonly known as geopolymers are considered ecofriendly substitutes for Portland cement. However, these materials still have a significant environmental impact, owing mainly to the use of activators based on commercial chemical products. In this sense, this research focuses on the production and use of waste glass-derived activators AAMs as an alternative to commercial activators. Using a thermochemical synthesis method, activator compositions were systematically designed to achieve predefined activator modulus (Ms = SiO2/Na2O = 0.5; 1.0 and 1.5). These alternative activators were studied by XRD, FTIR and SEM techniques. Additionally, one-part AAMs were manufactured using spent oil filtration earth (SOFE) as precursor and activator with optimum modulus Ms = 1.0. The influence of the Na2O dosage was studied (10; 20 and 30 g of Na2O per every 100 g of SOFE) as well as the influence of the activator modulus maintaining the optimum dosage of 20 g Na2O per 100 g of SOFE. As a control, two-part AAMs were also synthetized with the optimum dosage and modulus employing commercial activators (NaOH + Na2SiO3 solution). Results indicate that the modulus of the alternative activator and especially the Na2O dosage have a significant influence on the technological properties of AAMs based in SOFE, with an optimum compressive strength (35.8 MPa) for the addition of 20 g of Na2O per every 100 g of SOFE using activator with modulus Ms = 1.0. This research embodies a sustainable approach to AAM production and suggests waste glass as a valuable raw material for sodium silicate synthesis intended for the one-part activation of spent filtering earth from the agri-food industry, aligning with the principles of circular economy and sustainable development goals.

18.
Waste Manag ; 183: 53-62, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38718627

RESUMEN

Advanced thermochemical technologies for plastic waste valorization represent an interesting alternative to waste-to-energy options. They are particularly appealing for waste-to-hydrogen and waste-to-chemicals applications, with autothermal steam-oxygen gasification in fluidized bed reactors showing the greatest market potential. The study describes a series of experimental tests carried out on a large pilot-scale fluidized bed gasifier, using steam and O2-enriched air, with increasing fractions of oxygen. Different values of the main operating parameters are varied: equivalence ratio (0.22-0.25), steam-to-carbon ratio (0.7-1.13), and steam-to-oxygen ratio (up to 3.2). The fuel consists of real mixed plastic waste coming from separate collection of municipal solid wastes. The data obtained are used to investigate in depth the role of the main operating parameters and to improve and validate a recently developed one-dimensional kinetic model for waste gasification. The validation shows a good agreement between experimental data and model results, suggesting the reliability of the model to predict the reactor behavior under conditions of pure steam-oxygen gasification, relevant to many industrial applications. It has been found that the equivalence ratio is the parameter that most affects the syngas composition. At a constant equivalent ratio, the molar fraction of oxygen in the enriched air shows a limited influence on syngas composition while the steam is crucial in controlling the temperature along the reactor. Provided that the steam-to-carbon molar ratio is larger than 1.5, steam affects mainly the reactor temperature rather than the syngas composition, qualifying the steam-to-oxygen molar ratio as an instrumental parameter for smooth plant operation.


Asunto(s)
Oxígeno , Plásticos , Eliminación de Residuos , Vapor , Oxígeno/análisis , Eliminación de Residuos/métodos , Proyectos Piloto , Residuos Sólidos/análisis , Modelos Teóricos , Gases/análisis
19.
Chemosphere ; 359: 142257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719116

RESUMEN

The accurate prediction of standard vaporization enthalpy (ΔvapHm°) for volatile organic compounds (VOCs) is of paramount importance in environmental chemistry, industrial applications and regulatory compliance. To overcome traditional experimental methods for predicting ΔvapHm° of VOCs, machine learning (ML) models enable a high-throughput, cost-effective property estimation. But despite a rising momentum, existing ML algorithms still present limitations in prediction accuracy and broad chemical applications. In this work, we present a data driven, explainable supervised ML model to predict ΔvapHm° of VOCs. The model was built on an established experimental database of 2410 unique molecules and 223 VOCs categorized by chemical groups. Using supervised ML regression algorithms, the Random Forest successfully predicted VOCs' ΔvapHm° with a mean absolute error of 3.02 kJ mol-1 and a 95% test score. The model was successfully validated through the prediction of ΔvapHm° for a known database of VOCs and through molecular group hold-out tests. Through chemical feature importance analysis, this explainable model revealed that VOC polarizability, connectivity indexes and electrotopological state are key for the model's prediction accuracy. We thus present a replicable and explainable model, which can be further expanded towards the prediction of other thermodynamic properties of VOCs.


Asunto(s)
Aprendizaje Automático , Termodinámica , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Volatilización , Algoritmos , Modelos Químicos
20.
Waste Manag Res ; 42(9): 806-813, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38695365

RESUMEN

Mineral wool is commonly used in construction as thermal insulation material. After the product's lifetime, it is classified as hazardous waste if no trademark of the European Certification Board for Mineral Wool Products (EUCEB) or the German Institute for Quality Assurance and Labelling (RAL) exists. Mineral Wool Waste (MWW) is typically landfilled in Europe, which is challenging due to its low bulk density and dimensional stability. This circumstance highlights the need for alternative recycling methods that increase the recycling rate of construction and demolition (C&D) waste. This article outlines the recycling opportunities of MWW and focuses on the use of thermochemical treatment of different mixtures of input materials to produce a supplementary cementitious material (SCM). The material characterisation results and investigations on the binder suitability demonstrate that the slag fractions after the thermochemical treatment are well-qualified to be used as reactive binder components. Additionally, a material flow analysis was conducted to estimate the substitution potential of MWW as SCM in the Austrian cement industry.


Asunto(s)
Materiales de Construcción , Reciclaje , Reciclaje/métodos , Residuos Industriales/análisis , Lana , Animales , Administración de Residuos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA