Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Food Chem ; 462: 140973, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208730

RESUMEN

High-pressure processing (HPP) of donor human milk (DM) minimally impacts the concentration and bioactivity of some important bioactive proteins including lactoferrin, and bile salt-stimulated lipase (BSSL) compared to Holder pasteurization (HoP), yet the impact of HPP and subsequent digestion on the full array of proteins detectable by proteomics remains unclear. We investigated how HPP impacts undigested proteins in DM post-processing and across digestion by proteomic analysis. Each pool of milk (n = 3) remained raw, or was treated by HPP (500 MPa, 10 min) or HoP (62.5 °C, 30 min), and underwent dynamic in vitro digestion simulating the preterm infant. In the meal, major proteins were minimally changed post-processing. HPP-treated milk proteins better resisted proximal digestion (except for immunoglobulins, jejunum 180 min) and the extent of undigested proteins after gastric digestion of major proteins in HPP-treated milk was more similar to raw (e.g., BSSL, lactoferrin, macrophage-receptor-1, CD14, complement-c3/c4, xanthine dehydrogenase) than HoP.


Asunto(s)
Digestión , Recien Nacido Prematuro , Proteínas de la Leche , Leche Humana , Pasteurización , Proteómica , Humanos , Leche Humana/química , Leche Humana/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/análisis , Presión , Recién Nacido , Lactoferrina/análisis , Lactoferrina/metabolismo , Manipulación de Alimentos , Femenino , Lactante , Modelos Biológicos
2.
Food Res Int ; 195: 114984, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277245

RESUMEN

This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.


Asunto(s)
Antioxidantes , Culinaria , Furaldehído , Productos Finales de Glicación Avanzada , Calor , Reacción de Maillard , Piruvaldehído , Antioxidantes/análisis , Antioxidantes/química , Furaldehído/análogos & derivados , Furaldehído/análisis , Furaldehído/química , Piruvaldehído/química , Culinaria/métodos , Humanos , Glioxal/química , Gusto , Polímeros/química , Pan/análisis
3.
Foods ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272425

RESUMEN

Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential physical, biological, and chemical hazards. Although thermal treatments are commonly used to ensure food safety in IFs and BFs, they can negatively affect sensory qualities, reduce thermosensitive nutrients, and lead to chemical contaminant formation. To address these challenges, non-thermal processing technologies such as high-pressure processing, pulsed electric fields, radio frequency, and ultrasound offer efficient pathogen destruction similar to traditional thermal methods, while reducing the production of key process-induced toxicants such as furan and 5-hydroxymethyl-2-furfural (HMF). These alternative thermal processes aim to overcome the drawbacks of traditional methods while retaining their advantages. This review paper highlights the growing global demand for healthy, sustainable foods, driving food manufacturers to adopt innovative and efficient processing techniques for both IFs and BFs. Based on various studies reviewed for this work, the application of these novel technologies appears to reduce thermal processing intensity, resulting in products with enhanced sensory properties, comparable shelf life, and improved visual appeal compared to conventionally processed products.

4.
Foods ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39272493

RESUMEN

The aim of this study was to simulate microwave heating characteristics to investigate the lipid quality in rainbow trout, including the impact of the heating rate, maximum temperature, and thermal processing level on the extent of lipid oxidation and on the fatty acid extraction coefficient. Increasing F0 from 3 to 6 min improved fatty acid retention at high heating rates but led to a decrease in the measured results at low heating rates. Elevated thermal processing levels and maximum temperatures were observed to intensify the oxidation. At F0 = 3 min, an increase in maximum temperature led to an increase in the total lipid extraction coefficient but a decrease in the fatty acid extraction coefficient. However, an increase in maximum temperature resulted in a decrease in both extraction coefficients when F0 was 6 min. The coefficient spectra of fatty acid extraction obtained from the microwave and traditional heat treatments showed nonparallel trends, confirming the presence of non-thermal effects during microwave thermal processing. In conclusion, compared to conventional heat treatment methods, microwave processing has significant potential for enhancing the lipid quality of ready-to-eat rainbow trout products and effectively reducing production costs.

5.
Foods ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39272564

RESUMEN

Two genotypes of pigmented maize (black (BM) and red (RM)) were used as flour ingredients in several formulations of the traditional baked maize dish "proja". This study investigated the stability of phytochemical compounds and antioxidant activity in proja as affected by baking and different acidity degrees of dough formulations. Compared to RM proja, all BM proja formulations were significantly higher in antioxidant compounds and exhibited the highest inhibitory activity (73-85%) against DPPH. There was a strong significant correlation between DPPH inhibition and total phenolics (r2 = 0.95), flavonoids (r2 = 0.96), and anthocyanins (r2 = 0.97) in baked proja. After baking, 67-85% of total phenolics were retained. The fate of flavonoids and anthocyanins after baking was variable: from 70% degradation to liberation. Dough acidity significantly and positively affected the content of phenolics, flavonoids, and anthocyanins in BM proja (r2 = 0.70, 0.82, and 0.47, respectively). Baking increased antioxidant activity against DPPH, •OH, and O2•- radicals in proja, except for ≈10% decline of DPPH inhibition in BM proja. In RM proja, retention of inhibitory capacity against O2•- was highly correlated to flavonoid retention (r2 = 0.71). Using pigmented maize flour in proja baking resulted in proja with appreciable content of total phenolics, flavonoids, anthocyanins, and high antioxidant activity, confirming the significant improvement of the nutrient profile of this traditional food.

6.
Food Chem ; 463(Pt 1): 141190, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260171

RESUMEN

The aim of this study was to investigate the changes of untreated and steamed (100 °C, 20 min), fried (150 °C, 10 min), and baked (200 °C, 30 min) sweet potato polysaccharides during in vitro digestion and their effects on the intestinal flora. The results showed that the reducing sugar content of all four sweet potato polysaccharides increased significantly during digestion. During in vitro fecal fermentation, the content of reducing sugars and total carbohydrates decreased significantly. It indicated that all four polysaccharides showed degradation of polysaccharides during fermentation. Compared to the blank group, the total SCFAs content of the four polysaccharide sample groups was significantly increased. It was worth noting that sweet potato polysaccharides increased the percentage of Bacteroidetes and decreased the percentage of Proteobacteria in the intestinal flora. The findings provide evidence that sweet potato polysaccharides regulate intestinal flora and maintain intestinal health through interactions with intestinal flora.

7.
J Food Prot ; : 100359, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260571

RESUMEN

Dipicolinic acid (DPA) is a major constituent of spores and reportedly provides protection against inactivation by various thermal processes, however the relationship between DPA and resistance towards pressure-assisted thermal processing is not well understood. Thermal and pressure-assisted thermal inactivation studies of Clostridium botulinum nonproteolytic strains QC-B and 610-F, proteolytic strain Giorgio-A, and thermal surrogate Clostridium sporogenes PA3679 spores suspended in ACES buffer (0.05 M, pH 7.0) were performed to determine if a relationship exists between DPA release and log reduction of spores. Thermal inactivation at 80, 83, and 87°C for nonproteolytic strains and 101, 105, and 108°C for the proteolytic strain and thermal surrogate were conducted. Pressure-assisted thermal inactivation for nonproteolytic strains at 83°C/600 MPa and for the proteolytic strain and thermal surrogate at 105°C/600 MPa were performed. Surviving spores were enumerated by 5-tube MPN method for log reductions and analyzed for released DPA by liquid chromatography-tandem mass spectrometry. The correlation between MPN log reductions, released DPA, and D-values were calculated. A positive correlation between released DPA and log reduction of spores was observed for QC-B and 610-F at 80 and 83°C (r = 0.6073 - 0.7755; P <0.01). At 87°C, a positive correlation was detected for 610-F (r = 0.4242, P < 0.05) and no correlation observed for QC-B (r = 0.1641; P > 0.05). A strong, positive correlation (r = 0.8359 - 0.9284; P < 0.05) between released DPA and log reduction of spores was observed for Giorgio-A at 101, 105, and 108°C and a strong, positive correlation (r = 0.8402; P < 0.05) was observed for PA3679 at 101°C. A positive correlation (r = 0.5646 - 0.6724; P <0.01) was observed for QC-B, 610-F, and Giorgio-A after pressure-assisted thermal treatment. No correlation (r = 02494; P > 0.05) was found for PA3679 after pressure-assisted thermal treatment. These results suggest a correlation exists between DPA release and heat resistance, however, the level of correlation varied between strains and temperatures. The findings from this research may aid in the development of spore inactivation strategies targeting the thermal resistance profiles of various strains of C. botulinum spores.

8.
Sci Rep ; 14(1): 21175, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256523

RESUMEN

Various seeds, including sea buckthorn (Hippophae rhamnoides L.) seeds, are sources of different bioactive compounds. They can show anti-inflammatory, hypoglycemic, anti-hyperlipidemic, antibacterial, antioxidant, or other biological properties in in vitro and in vivo models. Our preliminary in vitro results have demonstrated that the extracts from raw (no thermal processing) and roasted (thermally processed) sea buckthorn seeds have antioxidant potential and anticoagulant activity. However, it was unclear which compounds were responsible for these properties. Therefore, in continuation of our previous study, the extracts were fractionated by C18 chromatography. Phytochemical analysis of three fractions (a, b, and c) from raw sea buckthorn seeds and four fractions (d, e, f, and g) from roasted sea buckthorn seeds were performed. Several in vitro assays were also conducted to determine the antioxidant and procoagulant/anticoagulant potential of the fractions and two of their major constituents-isorhamnetin 3-O-ß-glucoside7-O-α-rhamnoside and serotonin. LC-MS analyses showed that serotonin is the dominant constituent of fractions c and f, which was tentatively identified on the basis of its HRMS and UV spectra. Moreover, fractions c and f, as well as b and e, contained different B-type proanthocyanidins. Fractions b and e consisted mainly of numerous glycosides of kaempferol, quercetin, and isorhamnetin. The results of oxidative stress assays (measurements of protein carbonylation, lipid peroxidation, and thiol groups oxidation) showed that out of all the tested fractions, fraction g (isolated from roasted seeds and containing mainly dihexoses, and serotonin) demonstrated the strongest antioxidant properties.


Asunto(s)
Antioxidantes , Hippophae , Extractos Vegetales , Semillas , Antioxidantes/farmacología , Antioxidantes/química , Semillas/química , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Serotonina/metabolismo , Hemostáticos/farmacología , Hemostáticos/aislamiento & purificación , Humanos , Anticoagulantes/farmacología , Anticoagulantes/química , Animales
9.
Food Res Int ; 194: 114931, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232543

RESUMEN

The snack food market has been changing to keep up with the growing demand for healthier products and, as a result, alternative products to traditional potato chips have been emerging to provide health-related benefits. Extrusion, frying, and baking are the main techniques used worldwide in the processing of snacks and are among the main reasons for the formation of toxic compounds induced by heat, such as acrylamide. This contaminant is formed during thermal processing in foods heated at high temperatures and rich in carbohydrates. Processed potato-based products have been pointed out as the main contributors to acrylamide dietary exposure. Many studies have been conducted on potato chips since the discovery of this contaminant in foods and research on the formation of acrylamide in snacks from other vegetables has begun to be conducted more recently. Thus, this review aims to present a detailed discussion on the occurrence of acrylamide in alternative vegetable snacks that are consumed as being healthier and to address relevant questions about the effectiveness of mitigation strategies that have been developed for these products. Through this research, it was observed that, depending on the vegetable, the levels of this contaminant can be quite variable. Alternative snacks, such as sweet potato, carrot and beetroot may also contain high levels of acrylamide and need to be monitored even more closely than potatoes snacks, as less information is available on these food products. Furthermore, various pretreatments (e.g. bleaching, immersion in solutions containing chemical substances) and processing conditions (heating methods, time, temperature) can reduce the formation of acrylamide (54-99 %) in alternative vegetable snacks.


Asunto(s)
Acrilamida , Bocadillos , Solanum tuberosum , Acrilamida/análisis , Solanum tuberosum/química , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Humanos , Calor , Culinaria/métodos
10.
Food Chem ; 463(Pt 1): 141100, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39244993

RESUMEN

Low voltage electrostatic field (LVEF), a novel non-thermal processing technology, shows promise for food preservation. However, the absence of clear definition and quantification of the core concept "low voltage" obstructs the effective application of LVEF. This study assessed the efficiency of various LVEF intensities (100, 200, 300 V) on cherry tomato preservation, revealing significant differences in preservation efficiency. Compared to the control, samples treated with different intensities showed varied reductions in weight loss (6.26-25.45 %), firmness changes (5.17-28.91 %), and decay incidence (47.91-70.89 %). Quantitative analysis elucidated that the differential preservation efficiency may arise from a dose-response relationship between electric field strength and hydrogen peroxide (H2O2) content, identifying an optimal H2O2 content range of 21.18-27.01 mmol kg-1 for the effective preservation of cherry tomatoes under LVEF. These findings highlight the importance of precise LVEF intensity control for effective food preservation and offer insights for developing optimal LVEF treatment intensities for diverse produce.

11.
Food Chem ; 463(Pt 1): 141078, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243612

RESUMEN

A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and PF treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.

12.
Heliyon ; 10(14): e33504, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100435

RESUMEN

Processing of berries usually degrades anthocyanin and non-anthocyanin phenolics and diminishes antioxidant activity. In Colombia, jelly produced from the fruit of Vaccinium meridionale Swartz is a popular product among consumers. The aim of this study was to determine the effect of jelly processing steps on bioactive components. Analysis of anthocyanins (ACNs) and non-anthocyanin phenolics was performed via HPLC-PDA. Antioxidant activity was assessed by the ORACFL method. The pulping step had the highest impact on ACNs, whose total content was significantly higher in the pomace (747.6 ± 59.2 mg cyanidin 3-glucoside (cyn 3-glu)/100 g) than in the pulp (102.7 ± 8.3 mg cyn 3-glu/100 g). Similarly, pulping caused a significant decrease in flavonols, procyanidins (PACs) and ORACFL values. Despite the effects of processing, Colombian bilberry jelly can be considered a good source of phenolic compounds with high antioxidant activity. The final concentration of ACNs, hydroxycinnamic acids (HCAs) and flavonols, as well as the ORACFL values in this product were comparable to those of fresh cranberry (Vaccinium oxycoccos) and black currant (Ribes nigrum). The results also suggest that the pomace of V. meridionale can be recovered as an excellent source of bioactive compounds.

13.
Environ Sci Technol ; 58(33): 14675-14686, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39102504

RESUMEN

The escalating levels of plastic waste and energy crises underscore the urgent need for effective waste-to-energy strategies. This study focused on converting polypropylene wastes into high-value products employing various iron-based catalysts and microwave radiative thermal processing. The Al-Fe catalysts exhibited exceptional performance, achieving a hydrogen utilization efficiency of 97.65% and a yield of 44.07 mmol/g PP. The gas yields increased from 19.99 to 94.21 wt % compared to noncatalytic experiments. Furthermore, this catalytic system produced high-value bamboo-shaped carbon nanotubes that were absent in other catalysts. The mechanism analysis on catalytic properties and product yields highlighted the significance of oxygen vacancies in selecting high-value products through two adsorption pathways. Moreover, the investigation examined the variations in product distribution mechanisms between conventional and microwave pyrolysis, in which microwave conditions resulted in 4 times higher hydrogen yields. The technoeconomic assessment and Monte Carlo risk analysis further compared the disparity. The microwave technique had a remarkable internal rate of return (IRR) of 39%, leading to an income of $577/t of plastic with a short payback period of 2.5 years. This research offered sustainable solutions for the plastic crisis, validating the potential applicability of commercializing the research outcomes in real-world scenarios.


Asunto(s)
Hidrógeno , Microondas , Nanotubos de Carbono , Plásticos , Nanotubos de Carbono/química , Hidrógeno/química , Catálisis
14.
J Texture Stud ; 55(4): e12860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138115

RESUMEN

Sous vide meat is an emerging food category, the consumption of which has increased owing to greater convenience, sensory traits, elderly consumers acceptance, and low-cost cuts use. However, required prolonged thermal treatment to achieve desired tenderness, impact energy-consumption besides triggering lipid oxidation, undesired off-flavors, and cooked meat profiles. Using a response surface methodology (RSM), this study evaluated the effects of the vegetal proteolytic papain (0 to 20 mg/kg) and low-temperature sous vide cooking (SVC) time (1 to 8 h at 65°C) in low-value marinated M. semitendinosus beefsteaks on technological characteristics associated with tenderness, and lipid oxidation. Additionally, the sensory profile traits of the pre-selected treatments were described using check-all-that-apply (CATA) and preference mapping. Shear force (WBsSF) was reduced with greater papain addition, whereas higher cooking losses (CL) were observed with longer SVC cooking times. Both the released total collagen and TBARS values increased with increasing papain concentrations and SVC times. Combining high levels of papain (>10 mg/kg) and SVC time (>6 h) resulted in lower WBsSF values (<20 N) but higher CL (>27%) and the CATA descriptors "aftertaste" and "mushy." The optimized conditions (14 mg/kg papain; 2 h SVC) also reduced WBsSF values (<26 N) with lower CL (<20%) and were most preferred and described as "juicy" and "tender" by consumers. Observed results suggest that combined mild SVC and papain may potentiate tenderness, conjointly favor juiciness and oxidation, further representing a promising tool for reducing SVC time without compromising valued sous vide sensory traits.


Asunto(s)
Culinaria , Papaína , Gusto , Culinaria/métodos , Animales , Bovinos , Humanos , Carne Roja/análisis , Masculino , Carne/análisis , Femenino
15.
Compr Rev Food Sci Food Saf ; 23(5): e13409, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39137003

RESUMEN

With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.


Asunto(s)
Culinaria , Contaminación de Alimentos , Calor , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Culinaria/métodos , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Acrilamida/química , Acrilamida/análisis , Inocuidad de los Alimentos , Manipulación de Alimentos/métodos
16.
Food Chem X ; 23: 101662, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148526

RESUMEN

This study aimed to employed the effects of five thermal processing methods, namely steaming (SM), boiling (BO), frying (FY), roasting (RO), and vacuum sealing (SV), on the sensory, physicochemical properties, and microbial composition of grass carp meat during refrigerated storage, alongside unheated raw meat (RW) as control. The results showed that thermal treatment improved the sensory quality and shelf life of refrigerated grass carp meat, and their shelf life was RW < BO

17.
Food Chem ; 461: 140887, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167948

RESUMEN

The effects of different thermal processing conditions on the flavor profiles of channel catfish were evaluated in terms of fatty acids, volatile flavor and taste compounds using steaming, boiling, roasting, and microwaving with different degrees. After thermal processing, 72 volatile organic compounds were detected, including 20 hydrocarbons, 5 ketones, 20 aldehydes, 7 heterocyclic compounds, 12 alcohols and others. Meanwhile, the contents of unsaturated fatty acids like oleic acid and linoleic showed a significant decline due to their heat-sensitive properties. With regard to taste compounds, thermal processing contributed to umami amino acids and free nucleotides conversion, with the initial glutamate and IMP contents of 15.87 and 164.91 mg/100 g in raw samples mainly increasing by 2.8-10.3 and 14.4-105.5 mg/100 g in processed ones. Compared to other methods, microwaving had limited effects on flavor compounds, and steaming and roasting had better performance to improve the flavor complexity of channel catfish.


Asunto(s)
Culinaria , Ácidos Grasos , Aromatizantes , Calor , Ictaluridae , Gusto , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Ácidos Grasos/análisis , Ácidos Grasos/química , Aromatizantes/química , Aromatizantes/análisis
18.
Food Res Int ; 192: 114797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147492

RESUMEN

Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Frutas , Calor , Verduras , Antioxidantes/análisis , Frutas/química , Verduras/química , Manipulación de Alimentos/métodos , Pasteurización , Polifenoles/análisis , Vapor , Humanos , Esterilización/métodos , Microondas
19.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38957008

RESUMEN

Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.

20.
Food Chem ; 458: 140526, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053392

RESUMEN

Thermal processing can alter the biological activity of seed phytochemicals in various ways, thus improving shelf life, bioavailability, oxidative stability, and oil yield; it can also decrease the content of antinutritional compounds, reduce cytotoxic activity and increase the total phenolic content of the seeds. However, this treatment can also inactivate beneficial compounds, including phenolics. This review describes the effect of different thermal processing methods on the content, activity, and bioavailability of chemical compounds from different edible seeds. The outcome is dependent on the method, temperature, time of processing, and type of seeds. Although thermal processing has many benefits, its precise effect on different species requires further clarification to determine how it influences their phytochemical content and biological activity, and identify the optimal conditions for processing.


Asunto(s)
Antioxidantes , Calor , Semillas , Semillas/química , Antioxidantes/química , Manipulación de Alimentos , Fitoquímicos/química , Extractos Vegetales/química , Fenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA