Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Andrology ; 12(3): 570-584, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37594251

RESUMEN

BACKGROUND: Infertility affects around 15% of all couples worldwide and is increasingly linked to variants in genes specifically expressed in the testis. Well-established causes of male infertility include pathogenic variants in the genes TEX11, TEX14, and TEX15, while few studies have recently reported variants in TEX13B, TEX13C, FAM9A (TEX39A), and FAM9B (TEX39B). OBJECTIVES: We aimed at screening for novel potential candidate genes among the human TEX ("testis expressed") genes as well as verifying previously described disease associations in this set of genes. MATERIALS AND METHODS: To this end, we screened the exome sequencing data of 1305 men, including 1056 crypto- and azoospermic individuals, and determined cell-specific expression by analyzing testis-specific single-cell RNA sequencing data for genes with identified variants. To investigate the overarching role in male fertility, we generated testis-specific knockdown (KD) models of all 10 orthologous TEX genes in Drosophila melanogaster. RESULTS: We detected rare potential disease-causing variants in TEX10, TEX13A, TEX13B, TEX13C, TEX13D, ZFAND3 (TEX27), TEX33, FAM9A (TEX39A), and FAM9B (TEX39B), in 28 infertile men, of which 15 men carried variants in TEX10, TEX27, and TEX33. The KD of TEX2, TEX9, TEX10, TEX13, ZFAND3 (TEX27), TEX28, TEX30, NFX1 (TEX42), TEX261, and UTP4 (TEX292) in Drosophila resulted in normal fertility. DISCUSSION: Based on our findings, the autosomal dominant predicted genes TEX10 and ZFAND3 (TEX27) and the autosomal recessive predicted gene TEX33, which all three are conceivably required for germ cell maturation, were identified as novel potential candidate genes for human non-obstructive azoospermia. We additionally identified hemizygous loss-of-function (LoF) variants in TEX13B, TEX13C, and FAM9A (TEX39A) as unlikely monogenic culprits of male infertility as LoF variants were also found in control men. CONCLUSION: Our findings concerning the X-linked genes TEX13B, TEX13C, and FAM9A (TEX39A) contradict previous reports and will decrease false-positive reports in genetic diagnostics of azoospermic men.


Asunto(s)
Azoospermia , Infertilidad Masculina , Animales , Humanos , Masculino , Azoospermia/genética , Drosophila melanogaster , Proteínas de Ciclo Celular/genética , Infertilidad Masculina/metabolismo , Testículo/metabolismo , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética
2.
Mol Carcinog ; 62(12): 1974-1989, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792308

RESUMEN

Testis expression 10 (Tex10) is reported to be associated with tumorigenesis in several types of cancer types, but its role in hepatocellular carcinoma (HCC) metastasis has not been investigated. In this study, the expression of Tex10 in the HCC cell line and tissue microarray was determined by Western blot and immunohistochemistry (IHC), respectively. RNA sequencing-based transcriptome analysis was performed to identify the Tex10-mediated biological process. Cell Counting Kit-8, colony formation, transwell assays, xenograft tumor growth, and lung metastasis experiments in nude mice were applied to assess the effects of Tex10 on cell proliferation, migration, invasion, and metastasis. The underlying mechanisms were further investigated using dual-luciferase reporter, co-immunoprecipitation, immunofluorescence, and chromatin immunoprecipitation assays. We found that Tex10 was upregulated in HCC tumor tissues compared to adjacent normal tissues, with its expression correlated with a poor prognosis. Gene ontology function enrichment analysis revealed alterations in several biological processes in response to Tex10 knockdown, especially cell motility and cell migration. Functional studies demonstrated that Tex10 promotes HCC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Moreover, Tex10 was shown to regulate invasion and epithelial-mesenchymal transition via signal transducer and activator of transcription 3 (STAT3) signaling. Mechanistically, Tex10 was found to interact with STAT3 and promote its transcriptional activity. In addition, we found that Tex10 promotes p300-mediated STAT3 acetylation, while p300 silencing abolishes Tex10-enhanced STAT3 transcriptional activity. Together, these findings indicate that Tex10 functions as an oncogene by upregulating STAT3 activity, thus suggesting that Tex10 may serve as a prognostic biomarker and/or therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia
3.
bioRxiv ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36865339

RESUMEN

Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.

4.
Bioengineered ; 13(2): 4285-4300, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35156514

RESUMEN

LncRNAs exert important functions in the modulation of tumorigenesis and cancer stem cell-like properties in liver cancer. However, the role of LncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) in modulating tumorigenesis and cancer stem cell-like properties in liver cancer is still not known. In this study, the expression of LncRNA RSU1P2 was significantly elevated in liver cancer tissues and cells. Besides, knockdown of RSU1P2 repressed cell viability, invasion, epithelial-mesenchymal transition (EMT) of liver cancer cells and the expressions of cancer stem cell-related genes, whereas facilitated the apoptosis of liver cancer cells. In addition, LncRNA RSU1P2 can interact with microRNA let-7a (let-7a), and repress let-7a expression. Testis-Expressed Protein 10 (Tex10) was identified to be a target of let-7a, and let-7a repressed Tex10 expression. Finally, RSU1P2 knockdown suppressed tumor volume, tumor weight, and EMT in a xenograft model. Therefore, LncRNA RSU1P2 promotes tumorigenesis and cancer stem cell-like properties in liver cancer through let-7a/Tex10 pathway.


Asunto(s)
Neoplasias Hepáticas , MicroARNs/genética , Células Madre Neoplásicas , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
5.
Biochem Biophys Res Commun ; 601: 1-8, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35219000

RESUMEN

Prostate cancer (PCa) is a malignant epithelial tumor with a high rate of biochemical or local recurrence. Studies have suggested that LINC00624 plays an important oncogenic role in liver cancer. However, whether it exerts similar effects in PCa progression remains unknown. In this study, we explored the effects of LINC00624 on the malignant progression of PCa and sought to identify the relevant signaling pathways. The results showed that LINC00624 was highly expressed in PCa tissues and cells and was associated with poor prognosis in PCa patients. In vitro and in vivo assays further showed that LINC00624 knockdown could decrease the proliferative and migratory ability of PCa cells. Mechanistically, we found that LINC00624 and TEX10 formed a co-regulatory axis that stimulated NF-κB activity. Our data suggest that LINC00624 acts as an oncogene in PCa progression and has potential as a novel biomarker for PCa.


Asunto(s)
FN-kappa B , Proteínas Nucleares , Neoplasias de la Próstata , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Masculino , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Oncogenes , Neoplasias de la Próstata/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal
6.
Adv Sci (Weinh) ; 7(17): 2000593, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32995120

RESUMEN

Colorectal cancer (CRC) has become a predominant cancer worldwide. To understand the process of carcinogenesis, a short hairpin RNA library screening is employed to search for candidate genes that promote proliferation in the CRC cell line HT29. The candidate genes overlap with differentially expressed genes in 32 CRC tumor tissues in the GEO dataset GSE8671. The seventh-ranked testis expressed 10 (TEX10) is upregulated in CRC and its knockdown decreases cell proliferation. The TEX10 high-expression group exhibits worse overall survival (P = 0.003) and progression-free survival (P = 0.001) than the TEX10 low-expression group. TEX10 depletion decreases the growth of CRC cells in vitro and in vivo. Gene set enrichment analysis indicates that the nuclear factor-kappa B pathway is significantly enriched in the genes downregulated by TEX10 knockdown. Mechanistically, TEX10 interacts with RELA and increases its nuclear localization. TEX10 promotes RELA occupancy at gene promoters and regulates the expression of a subset of RELA-targeted genes, including TNFAIP8, SAT1, and IL6ST. Taken together, this study identifies that TEX10 promotes the proliferation of CRC cells in an RELA-dependent manner. In addition, high TEX10 expression is associated with poor prognosis in CRC patients.

7.
Mol Cell Proteomics ; 18(2): 338-351, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30429210

RESUMEN

TEX101 is a germ-cell-specific protein and a validated biomarker of male infertility. Mouse TEX101 was found essential for male fertility and was suggested to function as a cell surface chaperone involved in maturation of proteins required for sperm migration and sperm-oocyte interaction. However, the precise functional role of human TEX101 is not known and cannot be studied in vitro due to the lack of human germ cell lines. Here, we genotyped 386 men for a common missense variant rs35033974 of TEX101 and identified 52 heterozygous and 4 homozygous men. We then discovered by targeted proteomics that the variant allele rs35033974 was associated with the near-complete degradation (>97%) of the corresponding G99V TEX101 form and suggested that spermatozoa of homozygous men could serve as a knockdown model to study TEX101 function in humans. Differential proteomic profiling with label-free quantification measured 8,046 proteins in spermatozoa of eight men and identified eight cell-surface and nine secreted testis-specific proteins significantly down-regulated in four patients homozygous for rs35033974. Substantially reduced levels of testis-specific cell-surface proteins potentially involved in sperm migration and sperm-oocyte interaction (including LY6K and ADAM29) were confirmed by targeted proteomics and Western blotting assays. Because recent population-scale genomic data revealed homozygous fathers with biological children, rs35033974 is not a monogenic factor of male infertility in humans. However, median TEX101 levels in seminal plasma were found fivefold lower (p = 0.0005) in heterozygous than in wild-type men of European ancestry. We conclude that spermatozoa of rs35033974 homozygous men have substantially reduced levels of TEX101 and could be used as a model to elucidate the precise TEX101 function, which will advance biology of human reproduction.


Asunto(s)
Infertilidad Masculina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Proteómica/métodos , Espermatozoides/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Homocigoto , Humanos , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/química , Mapas de Interacción de Proteínas , Proteolisis , Semen/metabolismo
8.
Cell Cycle ; 17(11): 1310-1318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30045663

RESUMEN

Testis expressed 10 (Tex10), a new core component of the pluripotency circuitry, has been reported to positively regulate embryonic stem cell (ESC) super-enhancers to promote ESC self-renewal; however, the expression and function of Tex10 in hepatocellular carcinoma (HCC) and liver cancer stem cells remains unclear. The present study was designed to investigate the expression patterns of Tex10 with immunohistochemistry, western blotting and RT-qPCR in samples from HCC patients and HCC cell lines. The results obtained show that Tex10 was highly expressed in HCC tissues, and elevated Tex10 protein levels positively correlate with the poorly differentiated carcinoma. Likewise, we found that Tex10 expression in the high-metastasis HCCLM3 potential cell line was higher than that in the low-metastasis HepG2 potential cell line, and Tex10 expression in liver cancer stem cells was also higher than that in adhered HCC cells. In addition, Tex10 knockdown decreased stem cell marker expression and drug resistance. Tex10 promoted cancer stemness through activation of the STAT3 signaling pathway. Taken together, our study demonstrates that Tex10 plays a potent carcinogenic role in HCC tumorigenesis by maintaining cancer stem cell properties through activation of the STAT3 signaling pathway and promoting chemo-resistance. Thus, targeting Tex10 may provide a novel and effective therapeutic strategy to suppress the tumorigenicity of advanced HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Resistencia a Antineoplásicos , Neoplasias Hepáticas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/genética , Regulación hacia Arriba , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Humanos , Receptores de Hialuranos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Fenotipo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Regulación hacia Arriba/genética
9.
J Biol Chem ; 292(52): 21527-21537, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29054931

RESUMEN

Polycomb group (PcG) proteins are epigenetic transcriptional repressors that orchestrate numerous developmental processes and have been implicated in the maintenance of embryonic stem (ES) cell state. More recent evidence suggests that a subset of PcG proteins engages in transcriptional activation in some cellular contexts, but how this property is exerted remains largely unknown. Here, we generated ES cells with single or combined disruption of polycomb group RING finger protein 3 (Pcgf3) and Pcgf5 with the CRISPR-Cas9 technique. We report that although these mutant cells maintained their self-renewal and colony-forming capacity, they displayed severe defects in mesoderm differentiation in vitro and in vivo Using RNA-seq to analyze transcriptional profiles of ES cells with single or combined Pcgf3/5 deficiencies, we found that in contrast to the canonical role of the related polycomb repressive complex 1 (PRC1) in gene repression, Pcgf3/5 mainly function as transcriptional activators driving expression of many genes involved in mesoderm differentiation. Proteomic approaches and promoter occupancy analyses helped to establish an extended Pcgf3/5 interactome and identified several novel Pcgf3/5 interactors. These included testis-expressed 10 (Tex10), which may directly contribute to transcriptional activation via the transcriptional co-activator p300. Furthermore, Pcgf3/5 deletion in ES cells substantially reduced the occupancy of Tex10 and p300 at target genes. Finally, we demonstrated that Pcgf3/5 are essential for regulating global levels of the histone modifier H2AK119ub1 in ES cells. Our findings establish Pcgf3/5 as transcriptional activators that interact with Tex10 and p300 in ES cells and point to redundant activity of Pcgf3/5 in pluripotency maintenance.


Asunto(s)
Proteínas del Grupo Polycomb/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/fisiología , Regiones Promotoras Genéticas/genética , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA