Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros











Intervalo de año de publicación
1.
Zoolog Sci ; 41(4): 351-362, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093281

RESUMEN

Praesagittifera naikaiensis is an acoel flatworm that inhabits the sandy beaches in the intertidal zone of the Seto Inland Sea. This species carries Tetraselmis sp., a green unicellular chlorophyte, as a symbiont in its body, and depends on algal photosynthetic products to survive. However, the eggs of P. naikaiensis contain no symbiotic algae, and juvenile P. naikaiensis acquire symbionts from the surrounding environment through horizontal transfer after hatching, thereby establishing new symbiotic relationships in each generation. Other acoel species, Symsagittifera spp., also inhabit the Seto Inland Sea shores and acquire symbiotic green algae via horizontal transfers. To characterize their symbionts, these acoels were collected from a wide area of the Seto Inland Sea and partial nucleotide sequences of the chloroplast ribulose diphosphate carboxylase large subunit (rbcL) of the symbiotic algae were determined and used for molecular phylogenetic analysis. Symbionts of both P. naikaiensis and Symsagittifera spp. belonged to the genus Tetraselmis but were phylogenetically distant, and both species established symbiotic relationships with different symbionts even when they were sympatric. To test whether each species selects specific algae in the environment for symbiosis, we established algal strains from P. naikaiensis and Symsagittifera sp. symbionts and conducted uptake experiments on aposymbiotic juveniles of P. naikaiensis. The results suggest that symbiotic algae from Symsagittifera could be taken up by P. naikaiensis juveniles, but were unable to establish a normal symbiotic relationship with the juveniles.


Asunto(s)
Chlorophyta , Simbiosis , Animales , Chlorophyta/fisiología , Platelmintos/fisiología , Platelmintos/genética , Filogenia , Especificidad de la Especie
2.
mSystems ; 9(8): e0058324, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082797

RESUMEN

Microalgal microbiomes play vital roles in the growth and health of their host, however, their composition and functions remain only partially characterized, especially across microalgal phyla. In this study, a natural seawater microbiome was introduced to three distinct, axenic species of microalgae, the haptophyte Isochrysis galbana, the chlorophyte Tetraselmis suecica, and the diatom Conticribra weissflogii (previously Thalassiosira), and its divergence and assembly under constant illumination was monitored over 49 days using 16S rRNA amplicon and metagenomic analyses. The microbiomes had a high degree of host specificity in terms of taxonomic composition and potential functions, including CAZymes profiles. Rhodobacteraceae and Flavobacteriaceae families were abundant across all microalgal hosts, but I. galbana microbiomes diverged further from T. suecica and C. weissflogii microbiomes. I. galbana microbiomes had a much higher relative abundance of Flavobacteriaceae, whereas the two other algal microbiomes had higher relative abundances of Rhodobacteraceae. This could be due to the bacterivorous mixotrophic nature of I. galbana affecting the carbohydrate composition available to the microbiomes, which was supported by the CAZymes profile of I. galbana microbiomes diverging further from those of T. suecica and C. weissflogii microbiomes. Finally, the presence of denitrification and other anaerobic pathways was found exclusively in the microbiomes of C. weissflogii, which we speculate could be a result of anoxic microenvironments forming in aggregates formed by this diatom during the experiment. These results underline the significant role of the microalgal host species on microbiome composition and functional profiles along with other factors, such as the trophic mode of the microalgal host. IMPORTANCE: As the main primary producers of the oceans, microalgae serve as cornerstones of the ecosystems they are part of. Additionally, they are increasingly used for biotechnological purposes such as the production of nutraceuticals, pigments, and antioxidants. Since the bacterial microbiomes of microalgae can affect their hosts in beneficial and detrimental ways, understanding these microbiomes is crucial to both the ecological and applied roles of microalgae. The present study advances the understanding of microalgal microbiome assembly, composition, and functionality across microalgal phyla, which may inform the modeling and engineering of microalgal microbiomes for biotechnological purposes.


Asunto(s)
Diatomeas , Haptophyta , Microalgas , Microbiota , ARN Ribosómico 16S , Microbiota/fisiología , ARN Ribosómico 16S/genética , Chlorophyta/microbiología , Agua de Mar/microbiología
3.
Bioengineering (Basel) ; 11(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39061804

RESUMEN

Microalgae are a valuable source of lipids, proteins, and pigments, but there are challenges in large-scale production, especially in harvesting. Existing methods lack proven efficacy and cost-effectiveness. However, flocculation, an energy-efficient technique, is emerging as a promising solution. Integrating surfactants enhances microalgal harvesting and disruption simultaneously, reducing processing costs. This study investigated cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulphate (SDS) for harvesting Tetraselmis sp. strains (75LG and 46NLG). CTAB exhibits superior results, with 88% harvesting efficiency at 1500 and 2000 mg L-1 for 75LG and 46NLG, respectively, for 60 min of sedimentation-thus being able to reduce the operating time. Beyond evaluating harvesting efficiency, our study explored the kinetics of the process; the modified Gompertz model led to the best fit. Furthermore, the largest kinetic constants were observed with CTAB, thus highlighting its efficacy in optimising the microalgal harvesting process. With the incorporation of the suggested enhancements, which should be addressed in future work, CTAB could hold the potential to optimise microalgal harvesting for cost-effective and sustainable large-scale production, eventually unlocking the commercial potential of microalgae for biodiesel production.

4.
J Environ Manage ; 365: 121520, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917540

RESUMEN

Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.


Asunto(s)
Biocombustibles , Biomasa , Microalgas , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Acuicultura , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612712

RESUMEN

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Asunto(s)
Chlorophyta , Ácidos Grasos Omega-3 , Microalgas , Especies Reactivas de Oxígeno , Antagonistas Colinérgicos , Suplementos Dietéticos , Antiinflamatorios/farmacología , Solventes
6.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502428

RESUMEN

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Asunto(s)
Peces Planos , Microalgas , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/microbiología , Administración Oral , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Microbioma Gastrointestinal/efectos de los fármacos , Acuicultura , Chlorophyta , Vibrio/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Hígado/metabolismo , Hígado/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
7.
Bioresour Technol ; 399: 130622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518877

RESUMEN

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Asunto(s)
Celulosa/análogos & derivados , Chlorophyta , Microalgas , Filtración , Polímeros
8.
Environ Pollut ; 345: 123425, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266700

RESUMEN

Ultraviolet light-emitting diodes (UV-LEDs), as a novel ultraviolet light source with flexible pulse mode, has gained significant attention for applications in water disinfection and food sterilization. This study investigated the comparative inactivation efficiency of Tetraselmis sp. with continuous and pulsed UV-LEDs irradiation, exploring different wavelengths, duty rates and pulse frequencies. The results reveal a significant enhancement in inactivation efficiency (p < 0.05) under pulsed conditions even at the same UV dose, with inactivation efficiency increasing as duty rate or pulse frequency decreases. The optimal conditions for achieving peak inactivation efficacy are identified as a duty rate of 50% and a pulse frequency of 5 Hz. Within this parameter space, pulsed irradiation leads to a remarkable 1.7-fold increase in inactivation efficiency at UV265 nm and a 1.5-fold increase at UV285 nm compared to continuous irradiation, respectively. Additionally, the disruptive impacts on photosynthetic performance are more pronounced with pulsed irradiation, particularly at the 5 Hz pulse frequency. In shed of these findings, the application of pulsed UV-LEDs irradiation emerges as a promising alternative to the conventional continuous UV disinfection methods in the area of seawater disinfection, offering higher disinfection efficacy and energy consumption.


Asunto(s)
Rayos Ultravioleta , Purificación del Agua , Desinfección/métodos , Purificación del Agua/métodos , Agua de Mar , Agua
9.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 511-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054788

RESUMEN

The dietary effects of the green microalga Tetraselmis suecica (TS) on the growth, digestive enzymes, immune and antioxidant responses, genes expression, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings were investigated. This microalga was mixed with the diet' ingredients at doses of 0.0 (the control), 5, 10, 15, and 20 g/kg diet and then fed to fish daily for 84 days. After the feeding trial, fish were experimentally challenged with Aeromonas sobria, infection and fish mortalities were recorded for another 10 days. Dietary TS significantly (p < 0.05) enhanced growth, digestive enzymes activities, and blood proteins, particularly at the level of 15 g/kg diet. Feeding the fish on 15 TS/kg feed exhibited highest mRNA expressions of GH and IGF-1 genes as well as SOD, CAT, and GPx genes compared to other TS groups. Moreover, highest levels of hepatic antioxidant and immune indices were found in the treatment of 15 g TS/kg feed. Significant downregulation of IL-1ß and IL-8 genes expression and significant upregulation of IL-10 gene expression were observed in TS-fed fish, principally in fish groups fed on 15-20 g TS/kg feed. Conversely, hepatic malondialdehyde levels, blood glucose, and the activities of transaminases (ALT and AST) were significantly (p < 0.05) decreased in fish fed with 15-20 g TS/kg diet. Serum bactericidal activity against A. sobria was significantly higher in TS-fed fish groups, and its highest levels were found in treatments of 15-20 g/kg diet. Of interest, the survival rates of fish groups fed diets with 10-20 g TS/kg feed were higher after the challenge with A. sobria infection than the control group. Accordingly, we can conclude that supplementing fish diets with a 15 g TS/kg diet enhanced the growth, antioxidant and immune activities, and resistance of Nile tilapia fingerlings to possible A. sobria infection.


Asunto(s)
Aeromonas , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Microalgas , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Citocinas/metabolismo , Cíclidos/metabolismo , Dieta/veterinaria , Inflamación/veterinaria , Alimentación Animal/análisis , Infecciones por Bacterias Gramnegativas/veterinaria
10.
Bioresour Technol ; 393: 129991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37949148

RESUMEN

Microalgae have become a key source of valuable compounds, promoting commercial scale applications. However, biological contamination is one of the most critical problems associated with large scale algal production, especially in open systems such as raceway ponds. The current research is the first to assess the effectiveness of open raceway ponds in maintaining a pure culture of Tetraselmis sp., starting from 20 L culture up to 10,000 L culture. Microbial profiling of each successive stage revealed lower abundance of eukaryotic organisms, whereas bacterial abundance increased notably resulting in a significant decrease in Tetraselmis sp. abundance. Furthermore, several bacteria with algae growth-promoting properties were found throughout the various culture stages including Balneola, Roseovarius, and Marinobacter. However, some algae-suppressive bacteria were evidenced at later stages such as Ulvibacter, Aestuariicoccus, and Defluviimonas. Overall, due to the increasing bacterial concentration, considerations limiting bacterial contamination need to be taken.


Asunto(s)
Chlorophyta , Microalgas , Microalgas/genética , Bacterias , Estanques/microbiología , Biomasa
11.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067566

RESUMEN

The modification of the Tetraselmis sp. algae material (Tetra-Alg) with surfactant Cethyltrimethylammonium Bromide (CTAB) yielded adsorbent Tetra-Alg-CTAB as an adsorbent of methyl orange (MO) and methylene blue (MB) solutions. The characterization of the adsorbent used an infrared (IR) spectrometer to identify functional groups and Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX FEI Inspect-S50, Midland, ON, Canada) to determine the surface morphology and elemental composition. Methyl orange and methylene blue adsorption on the adsorbent Tetra-Alg, Tetraselmis sp. algae-modified Na+ ions (Tetra-Alg-Na), and Tetra-Alg-CTAB were studied, including variations in pH, contact time, concentration, and reuse of adsorbents. The adsorption of MO and MB by Tetra-Alg-CTAB at pH 10, during a contact time of 90 min, and at a concentration of 250 mg L-1 resulted in MO and MB being absorbed in the amounts of 128.369 and 51.013 mg g-1, respectively. The adsorption kinetics and adsorption isotherms of MO and MB and Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB tend to follow pseudo-second-order kinetics models and Freundlich adsorption isotherms with each correlation coefficient value (R2) approaching 1. Due to the modification with the cationic surfactant CTAB, anionic dyes can be strongly sorbed in alkaline pH due to strong electrostatic attraction, while MB is more likely to involve cation exchange and hydrogen bonding. The reuse of Tetra-Alg-CTAB was carried out four times with adsorption percent > 70%, and the adsorbent was very effective in the adsorption of anionic dyes such as MO.

12.
Mar Drugs ; 21(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37999400

RESUMEN

Microalgae have gained attention as a promising source of chlorophylls and carotenoids in various industries. However, scaling up of conventional bubble columns presents challenges related to cell sedimentation and the presence of non-photosynthetic cells due to non-circulating zones and decreased light accessibility, respectively. Therefore, this study aimed to evaluate the newly developed continuously circulated bioreactor ROSEMAX at both laboratory and pilot scales, compared to a conventional bubble column. There was no significant difference in the biomass production and photosynthetic pigment content of Tetraselmis sp. cultivated at the laboratory scale (p > 0.05). However, at the pilot scale, the biomass cultured in ROSEMAX showed significantly high biomass (1.69 ± 0.11 g/L, dry weight, DW), chlorophyll-a (14.60 ± 0.76 mg/g, DW), and total carotene (5.64 ± 0.81 mg/g, DW) concentrations compared to the conventional bubble column (1.17 ± 0.11 g/L, DW, 10.67 ± 0.72 mg/g, DW, 3.21 ± 0.56 mg/g, DW, respectively) (p ≤ 0.05). Flow cytometric analyses confirmed that the proportion of Tetraselmis sp. live cells in the culture medium of ROSEMAX was 32.90% higher than that in the conventional bubble column, with a photosynthetic efficiency 1.14 times higher. These results support suggestions to use ROSEMAX as a bioreactor for industrial-scale applications.


Asunto(s)
Microalgas , Fotosíntesis , Reactores Biológicos , Carotenoides/análisis , Clorofila A , Medios de Cultivo , Biomasa
13.
PeerJ ; 11: e16078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37814628

RESUMEN

Acoels in the family Convolutidae are commonly found with microalgal symbionts. Convolutids can host green algal Tetraselmis and dinoflagellates within the family Symbiodiniaceae and the genus Amphidinium. The diversity of these microalgae has not been well surveyed. In this study, we used PCR and culture techniques to demonstrate the biodiversity of Tetraselmis and dinoflagellates in symbiosis with meiofaunal acoels. Here, 66 acoels were collected from seven localities around Okinawa, Ishigaki, and Kochi, Japan. While convolutids were heavily represented in this sampling, some acoels formed a clade outside Convolutidae and are potentially a new family of acoels harboring symbiotic microalgae. From the acoels collected, a total of 32 Tetraselmis and 26 Symbiodiniaceae cultures were established. Molecular phylogenies were constructed from cultured material (and from total host DNA) using the 18S rRNA gene (Tetraselmis) and 28S rRNA gene (dinoflagellates). The majority of Tetraselmis sequences grouped within the T. astigmatica clade but strains closely related to T. convolutae, T. marina, and T. gracilis were also observed. This is the first report of Tetraselmis species, other than T. convolutae, naturally associating with acoels. For dinoflagellates, members of Cladocopium and Miliolidium were observed, but most Symbiodiniaceae sequences formed clusters within Symbiodinium, grouping with S. natans, or sister to S. tridacnidorum. Several new Symbiodinium sequences from this study may represent novel species. This is the first molecular record of Miliolidium and Symbiodinium from acoels. Microalgal strains from this study will provide a necessary framework for future taxonomic studies and research on symbiotic relationships between acoels and microalgae.


Asunto(s)
Dinoflagelados , Microalgas , Microalgas/genética , Simbiosis , Japón , Filogenia , Biodiversidad , Dinoflagelados/genética
14.
Front Microbiol ; 14: 1228869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680531

RESUMEN

In the realm of applied phycology, algal physiology, and biochemistry publications, the absence of proper identification and documentation of microalgae is a common concern. This poses a significant challenge for non-specialists who struggle to identify numerous eukaryotic microalgae. However, a promising solution lies in employing an appropriate DNA barcoding technique and establishing comprehensive databases of reference sequences. To address this issue, we conducted a study focusing on the molecular characterization and strain identification of Tetraselmis and Chlorella species, utilizing the internal transcribed spacer (ITS) barcode approach. By analyzing the full nuclear ITS region through the Sanger sequencing approach, we obtained ITS barcodes that were subsequently compared with other ITS sequences of various Tetraselmis and Chlorella species. To ensure the reliability of our identification procedure, we conducted a meticulous comparison of the DNA alignment, constructed a phylogenetic tree, and determined the percentage of identical nucleotides. The findings of our study reveal the significant value of the ITS genomic region as a tool for distinguishing and identifying morphologically similar chlorophyta. Moreover, our results demonstrate that both the ITS1 and ITS2 regions are capable of effectively discriminating isolates from one another; however, ITS2 is preferred due to its greater intraspecific variation. These results underscore the indispensability of employing ITS barcoding in microalgae identification, highlighting the limitations of relying solely on morphological characterization.

15.
Bull Environ Contam Toxicol ; 111(3): 29, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642754

RESUMEN

Regarding the widespread use of titanium dioxide nanoparticles (TiO2NPs) in industry, many concerns have been raised about the risks of their potential release into aquatic ecosystems. Among the marine primary producers, Tetraselmis suecica is an ecologically important microalgae species used also as live feed in the shrimp culture industry. In the present study, the impacts of TiO2NPs on growth performance, photosynthetic pigments, lipid and protein content and its interaction with the cells of T. suecica were assessed. Based on the preliminary tests and OECD suggestion, concentrations of 5, 10, 50, 100, 200 and 400 mg/L TiO2NPs were applied to algal cells for 10 days. With increasing concentration, a decrease in T. suecica cell density was observed each day. TiO2NPs induced a half-maximal inhibitory concentration (IC50) of 106.26 mg/L on algal cells on the 3rd day. Chlorophyll a and b contents of the microalga decreased up to 56.08% and 52.74%, respectively following the exposure to TiO2NPs at 400 mg/L. TiO2NPs also decreased the algal contents of protein and lipid up to 7.21% and 50.64%, respectively at the highest concentration. Based on FTIR, FESEM with EDS and mapping analyses, the interaction of TiO2NPs with the T. suecica cells was revealed. The stocks of T. suecica could be damaged by the toxic effects of the released TiO2NPs affecting their application as live feed in mariculture.


Asunto(s)
Chlorophyta , Microalgas , Nanopartículas , Clorofila A , Ecosistema , Nanopartículas/toxicidad , Fotosíntesis , Lípidos
16.
Mar Drugs ; 21(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504900

RESUMEN

Microalgae are proposed to have powerful applications for human health in the pharmaceutical and food industries. Tetraselmis species (sp.), which are green microalgae, were identified as a source of broad-spectrum health-promoting biological activities. However, the bioactivity of these species has not been elucidated. We aimed to confirm the antioxidant, antiviral, and anti-inflammatory effects of Tetraselmis sp. extract (TEE). TEE showed 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical and hydrogen peroxide scavenging activities and reduced plaque formation in Vero E6 cells infected with vaccinia virus. TEE treatment also significantly inhibited nitric oxide (NO) production and improved cell viability in lipopolysaccharide (LPS)-induced RAW264.7 cells. These anti-inflammatory effects were further analyzed in LPS-induced RAW 264.7 cells and the zebrafish model. Further, TEE reduced induced NO synthase expression and proinflammatory cytokine release, including tumor necrosis factor-α, interleukin-6, and interleukin-1ß, through MAPKs and NF-κB-dependent mechanisms. Further analysis revealed that TEE increased the survival rate and reduced cell death and NO production in an LPS-stimulated zebrafish model. Further, high-performance liquid chromatography revealed a strong presence of the carotenoid lutein in TEE. Overall, the results suggest that lutein-enriched TEE may be a potent antioxidant, antiviral, and anti-inflammatory agent that could be sustainably utilized in industrial applications.


Asunto(s)
Antioxidantes , Luteína , Animales , Ratones , Humanos , Antioxidantes/farmacología , Luteína/farmacología , Luteína/metabolismo , Pez Cebra/metabolismo , Lipopolisacáridos/farmacología , Antivirales/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Células RAW 264.7 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
17.
Biotechnol Biofuels Bioprod ; 16(1): 85, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210534

RESUMEN

Rapid drying, cost-effective and safe, will increase the viability of using microalgae for several bio-industrial applications. In this study, five different drying techniques of microalgal biomass were investigated. These include freeze drying, oven drying, air drying, sun drying, and microwave drying. Morphology, metabolite content, FAME profiling, chlorophyll content, total organic carbon, and total nitrogen were analyzed. Results showed that the freeze-drying technique preserves the highest amounts of chlorophyll, proteins, and lipids. Oven drying underperformed as it retained the lowest amount of chlorophyll, protein, and lipid content. More importantly, FAME profiling results showed that air drying was the best technique in maintaining the highest amount of polyunsaturated fatty acids and more specifically docosahexaenoic acid (DHA). Furthermore, this process requires the least capital and energy needs. The findings from this study confirmed that the drying technique affects the microalga biomass quality.

18.
Fish Shellfish Immunol ; 136: 108713, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36990258

RESUMEN

In shellfish aquaculture, antibiotics are commonly used to address Vibrio infections. However, antibiotic abuse has increased the risk of environment pollution, which has also raised food safety concerns. Antimicrobial peptides (AMPs) are considered safe and sustainable alternatives to antibiotics. Hence, in this study, we aimed to develop a transgenic Tetraselmis subcordiformis line harboring AMP-PisL9K22WK for reducing the use of antibiotics in mussel aquaculture. Toward this, pisL9K22WK was assembled into nuclear expression vectors of T. subcordiformis. Post particle bombardment, several stable transgenic lines were selected after 6 months of herbicide resistance culture. Subsequently, Vibrio-infected mussels (Mytilus sp.) were orally fed transgenic T. subcordiformis to test the efficacy of this drug delivery system. The results showed that the transgenic line as an oral antimicrobial agent significantly improved the resistance of mussels to Vibrio. The growth rate of the mussels fed transgenic T. subcordiformis was considerably higher than that of mussels fed wild-type algae (10.35% versus 2.44%). In addition, the possibility of using the lyophilized powder of the transgenic line as drug delivery system was also evaluated; however, compared to that observed after feeding with live cells, the lyophilized powder did not improve the low growth rate caused by Vibrio infection, suggesting that fresh microalgae are more beneficial for the delivery of the PisL9K22WK to mussels than the lyophilized powder. In summary, this is a promising step toward the development of safe and environment-friendly antimicrobial baits.


Asunto(s)
Microalgas , Mytilus , Vibriosis , Vibrio , Animales , Péptidos Antimicrobianos , Polvos , Animales Modificados Genéticamente , Antibacterianos/farmacología
19.
Bioresour Technol ; 376: 128899, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933578

RESUMEN

This study leveraged the salinity and light intensity stresses during the stationary phase for enhancing the pigment contents and antioxidant capacity of Tetraselmis tetrathele. The highest pigments content was obtained in cultures under salinity stress (40 g L-1) illuminated using fluorescent light. Furthermore, the best inhibitory concentration (IC50) for scavenging the 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was found as 79.53 µg mL-1 in ethanol extract and cultures under red LED light stress (300 µmol m-2 s-1). The highest antioxidant capacity in a ferric-reducing antioxidant power (FRAP) assay (1,778.6 µM Fe+2) was found in ethanol extract and cultures under salinity stress illuminated using fluorescent light. Maximum scavenging of the 2.2-diphenyl-1-picrylhydrazyl (DPPH) radical was found in ethyl acetate extracts under light and salinity stresses. These results indicated that abiotic stresses could enhance the pigment and antioxidant components of T. tetrathele, which are value-added compounds in the pharmaceutical, cosmetic, and food industries.


Asunto(s)
Antioxidantes , Microalgas , Antioxidantes/química , Microalgas/química , Salinidad , Extractos Vegetales/farmacología , Etanol
20.
Life (Basel) ; 13(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36836837

RESUMEN

Marine microalgae are considered an important feedstock of multiple valuable metabolic compounds of high biotechnological potential. In this work, the marine microalga Tetraselmis striata was cultivated in different scaled photobioreactors (PBRs). Initially, experiments were performed using two different growth substrates (a modified F/2 and the commercial fertilizer Nutri-Leaf (30% TN-10% P-10% K)) to identify the most efficient and low-cost growth medium. These experiments took place in 4 L glass aquariums at the laboratory scale and in a 9 L vertical tubular pilot column. Enhanced biomass productivities (up to 83.2 mg L-1 d-1) and improved biomass composition (up to 41.8% d.w. proteins, 18.7% d.w. carbohydrates, 25.7% d.w. lipids and 4.2% d.w. total chlorophylls) were found when the fertilizer was used. Pilot-scale experiments were then performed using Nutri-Leaf as a growth medium in different PBRs: (a) a paddle wheel, open, raceway pond of 40 L, and (b) a disposable polyethylene (plastic) bag of 280 L working volume. Biomass growth and composition were also monitored at the pilot scale, showing that high-quality biomass can be produced, with important lipids (up to 27.6% d.w.), protein (up to 45.3% d.w.), carbohydrate (up to 15.5% d.w.) and pigment contents (up to 4.2% d.w. total chlorophylls), and high percentages of eicosapentaenoic acid (EPA). The research revealed that the strain successfully escalated in larger volumes and the biochemical composition of its biomass presents high commercial interest and could potentially be used as a feed ingredient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA