Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(51): 21535-21539, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38086081

RESUMEN

Phosphorus (P) inputs to the biosphere have quadrupled in less than a century due to intensification of rock phosphate mining and the use of P fertilizers for crop production. Accumulation of P in soils can increase P transfers across the soil-water continuum that impair aquatic ecosystem function and water resource quality for society. However, what this accumulated P is called, and subsequent connotations of magnitude versus mechanism at pedon versus watershed scale, varies in the literature. We argue that the two commonly used terms of "residual" and "legacy" P, though often used interchangeably, hold distinct meanings and connotations. Tracing the historical origins and trajectories of these terms reveals that "residual P" refers to the magnitude of fertilizer P that remains in the soil after crop harvest, whereas "legacy P" refers to the mechanism of P transfer across the watershed and its long-term impacts on water quality. The use of "legacy P" in many cases refers to the residuality of anthropogenic P inputs, and thus should be "residual P". We recommend that the term "residual P" be used when referring to the accumulation of P in soils under agricultural management from past inputs, and the term "legacy P" be used when referring to the transfer of P within watersheds. The intentional and thus consistent use of residual versus legacy P stands to provide important nuance in the environmental sciences and overlapping fields of agronomy and biogeochemistry.


Asunto(s)
Ecosistema , Fósforo , Fósforo/análisis , Agricultura , Suelo , Calidad del Agua , Fertilizantes/análisis
2.
Sci Total Environ ; 633: 81-92, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29573694

RESUMEN

The dissolved organic matter (DOM) and nutrient dynamics in small mountainous rivers (SMRs) strongly depend on hydrologic conditions, and especially on extreme events. Here, we investigated the quantity and quality of DOM and inorganic nutrients during base-flow and typhoon events, in a chronically N-saturated mainstream and low N-loaded tributaries of a forested small mountainous reservoir catchment in Taiwan. Our results suggest that divergent transport mechanisms were triggered in the mainstream vs. tributaries during typhoons. The mainstream DON increased from 3.4 to 34.7% of the TDN pool with a static DOC:NO3-N ratio and enhanced DOM freshness, signalling a N-enriched DOM transport. Conversely, DON decreased from 46 to 6% of the TDN pool in the tributaries and was coupled with a rapid increase of the DOC:NO3-N ratio and humified DOM signals, suggesting the DON and DOC were passively and simultaneously transported. This study confirmed hydrology and spatial dimensions being the main drivers shaping the composition and concentration of DOM and inorganic nutrients in small mountainous catchments subject to hydrologic extremes. We highlighted that the dominant flow paths largely controlled the N-saturation status and DOM composition within each sub-catchment, the effect of land-use could therefore be obscured. Furthermore, N-saturation status and DOM composition are not only a result of hydrologic dynamics, but potential agents modifying the transport mechanism of solutes export from fluvial systems. We emphasize the importance of viewing elemental dynamics from the perspective of a terrestrial-aquatic continuum; and of taking hydrologic phases and individual catchment characteristics into account in water quality management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA