Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
2.
Microb Cell Fact ; 23(1): 248, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267051

RESUMEN

BACKGROUND: Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS: Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS: This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.


Asunto(s)
Escherichia coli , Metales de Tierras Raras , Sulfuros , Terbio , Terbio/química , Terbio/metabolismo , Escherichia coli/metabolismo , Sulfuros/metabolismo , Sulfuros/química , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/química , Nanopartículas/química , Luminiscencia , Tecnología Química Verde/métodos
3.
EJNMMI Phys ; 11(1): 77, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276263

RESUMEN

BACKGROUND: Element-equivalent matched theranostic pairs facilitate quantitative in vivo imaging to establish pharmacokinetics and dosimetry estimates in the development of preclinical radiopharmaceuticals. Terbium radionuclides have significant potential as matched theranostic pairs for multipurpose applications in nuclear medicine. In particular, 155Tb (t1/2 = 5.32 d) and 161Tb (t1/2 = 6.89 d) have been proposed as a theranostic pair for their respective applications in single photon emission computed tomography (SPECT) imaging and targeted beta therapy. Our study assessed the performance of preclinical quantitative SPECT imaging with 155Tb and 161Tb. A hot rod resolution phantom with rod diameters ranging between 0.85 and 1.70 mm was filled with either 155Tb (21.8 ± 1.7 MBq/mL) or 161Tb (23.6 ± 1.9 MBq/mL) and scanned with the VECTor preclinical SPECT/CT scanner. Image performance was evaluated with two collimators: a high energy ultra high resolution (HEUHR) collimator and an extra ultra high sensitivity (UHS) collimator. SPECT images were reconstructed from photopeaks at 43.0 keV, 86.6 keV, and 105.3 keV for 155Tb and 48.9 keV and 74.6 keV for 161Tb. Quantitative SPECT images of the resolution phantoms were analyzed to report inter-rod contrast, recovery coefficients, and contrast-to-noise metrics. RESULTS: Quantitative SPECT images of the resolution phantom established that the HEUHR collimator resolved all rods for 155Tb and 161Tb, and the UHS collimator resolved rods ≥ 1.10 mm for 161Tb and ≥ 1.30 mm for 155Tb. The HEUHR collimator maintained better quantitative accuracy than the UHS collimator with recovery coefficients up to 92%. Contrast-to-noise metrics were also superior with the HEUHR collimator. CONCLUSIONS: Both 155Tb and 161Tb demonstrated potential for applications in preclinical quantitative SPECT imaging. The high-resolution collimator achieves < 0.85 mm resolution and maintains quantitative accuracy in small volumes which is advantageous for assessing sub organ activity distributions in small animals. This imaging method can provide critical quantitative information for assessing and optimizing preclinical Tb-radiopharmaceuticals.

4.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125117

RESUMEN

The solvothermal synthesis of LnCl3.nH2O with terephthalic acid (benzene-1,4-dicarboxylic acid, H2BDC) produced metal-organic frameworks (LnBDC), [Ln2(BDC)3(H2O)4]∞, where Ln = Sm, Eu, Tb, and Dy. The materials obtained were characterized by a number of physico-chemical techniques. The influence of the ionic radius of the lanthanides on the microstructural characteristics of the Ln-MOFs was evaluated by performing Rietveld refinement. The MOFs obtained were tested as fluorescent sensors for numerous cations and anions in water. The highly luminescent EuBDC and TbBDC demonstrated multi-responsive luminescence sensing functions to detect Ag(I), Fe(III), Cr(III), and Cr(VI), which are essential for their environmental applications. By applying the non-linear Stern-Volmer equation, the fluorescent quenching mechanism was determined. The stability of the obtained materials in water in a wide pH range (acidity pH = 4 and alkalinity pH = 9 solutions) was confirmed.

5.
J Phys Condens Matter ; 36(42)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39008992

RESUMEN

Using density functional theory (DFT) and linear response approaches, we compute the on-site Hubbard interactionUof elemental Terbium (Tb) metal in the pressure range ∼ 0-65 GPa. The resulting first-principlesUvalues with experimental crystal structures enable us to examine the magnetic properties of Tb using a DFT+U method. The lowest-energy magnetic states in our calculations for different high-pressure Tb phases-including hcp,α-Sm, and dhcp-are found to be compatible with the corresponding magnetic ordering vectors reported in experiments. The result shows that the inclusion of HubbardUsubstantially improves the accuracy and efficiency in modeling correlated rare-earth materials. Our study also provides the necessaryUinformation for other quantum many-body techniques to study Tb under extreme pressure conditions.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39046521

RESUMEN

PURPOSE: [177Lu]Lu-DOTATATE is an established somatostatin receptor (SSTR) agonist for the treatment of metastasized neuroendocrine neoplasms, while the SSTR antagonist [177Lu]Lu-DOTA-LM3 has only scarcely been employed in clinics. Impressive preclinical data obtained with [161Tb]Tb-DOTA-LM3 in tumor-bearing mice indicated the potential of terbium-161 as an alternative to lutetium-177. The aim of the present study was to compare the tolerability of 161Tb- and 177Lu-based DOTA-LM3 and DOTATATE in immunocompetent mice. METHODS: Dosimetry calculations were performed based on biodistribution data of the radiopeptides in immunocompetent mice. Treatment-related effects on blood cell counts were assessed on Days 10, 28 and 56 after application of [161Tb]Tb-DOTA-LM3 or [161Tb]Tb-DOTATATE at 20 MBq per mouse. These radiopeptides were also applied at 100 MBq per mouse and the effects compared to those observed after application of the 177Lu-labeled counterparts. Bone marrow smears, blood plasma parameters and organ histology were assessed at the end of the study. RESULTS: The absorbed organ dose was commonly higher for the SSTR antagonist than for the SSTR agonist and for terbium-161 over lutetium-177. Application of a therapeutic activity level of 20 MBq [161Tb]Tb-DOTA-LM3 or [161Tb]Tb-DOTATATE was well tolerated without major hematological changes. The injection of 100 MBq of the 161Tb- and 177Lu-based somatostatin analogues affected the blood cell counts, however. The lymphocytes were 40-50% lower in treated mice compared to the untreated controls on Day 10 irrespective of the radionuclide employed. At the same timepoint, thrombocyte and erythrocyte counts were 30-50% and 6-12% lower, respectively, after administration of the SSTR antagonist (p < 0.05) while changes were less pronounced in mice injected with the SSTR agonist. All blood cell counts were in the normal range on Day 56. Histological analyses revealed minimal abnormalities in the kidneys, liver and spleen of treated mice. No correlation was observed between the organ dose and frequency of the occurrence of abnormalities. CONCLUSION: Hematologic changes were more pronounced in mice treated with the SSTR antagonist than in those treated with the SSTR agonist. Despite the increased absorbed dose delivered by terbium-161 over lutetium-177, [161Tb]Tb-DOTA-LM3 and [161Tb]Tb-DOTATATE should be safe at activity levels that are recommended for their respective 177Lu-based analogues.

7.
Luminescence ; 39(7): e4820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030986

RESUMEN

The present investigation describes the synthesis of luminescent terbium-doped strontium aluminate nanoparticles emitting bright green light, which were synthesized through a solid-state reaction method assisted by microwave radiation. Various samples containing different concentrations of Tb were synthesized, and an analysis of their structural and morphological features was conducted using powder x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The band gaps of the samples were determined utilizing the Kubelka-Munk method. The quenching mechanism observed was identified to be due to dipole-dipole interaction using the Dexter theory. The optimized sample with a terbium concentration of 4 at.% has a luminescence lifetime of 1.05 ms with 20.62% quantum efficiency. The results of this study indicate that the terbium-doped strontium aluminate fluorescent nanoparticles exhibit promising potential for a wide range of applications, including bioimaging, sensing and solid-state lighting.


Asunto(s)
Luminiscencia , Nanopartículas , Estroncio , Terbio , Terbio/química , Estroncio/química , Nanopartículas/química , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Aluminio/química
8.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951541

RESUMEN

Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb3+), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY). In particular, our investigation reveals a strong correlation between PLQY, LY, particle size, and Tb3+concentration. Our synthetic approach allows precise control over the lateral size and thickness of the Gadox NPLs, resulting in a LY of 50,000 photons/MeV. Flexible scintillating screens fabricated with the solution-processable Gadox NPLs exhibited a 20 lp/mm X-ray spatial resolution, surpassing commercial Gadox scintillators. These high-performance and flexible Gadox NPL-based scintillators enable enhanced X-ray imaging capabilities in medicine and security. Our work provides a framework for designing nanomaterial scintillators with superior spatial resolution and efficiency through precise control of dimensions and dopant concentration.

9.
Anal Bioanal Chem ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849527

RESUMEN

Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).

10.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869533

RESUMEN

In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10-11 A vs. 1.66 × 10-12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = -10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V).

11.
Front Microbiol ; 15: 1416731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887713

RESUMEN

Microbial induced calcium carbonate precipitation (MICP) is considered as an environmentally friendly microbial-based technique to remove heavy metals. However, its application in removal and recovery of rare earth from wastewaters remains limited and the process is still less understood. In this study, a urease-producing bacterial strain DW018 was isolated from the ionic rare earth tailings and identified as Lysinibacillus based on 16S rRNA gene sequencing. Its ability and possible mechanism to recover terbium was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and fourier transform infrared spectroscopy (FTIR). The results showed that the urease activity of DW018 could meet the biomineralization requirements for the recovery of Tb3+ from wastewaters. The recovery rate was as high as 98.28% after 10 min of treatment. The optimal conditions for mineralization and recovery were determined as a bacterial concentration of OD600 = 1.0, a temperature range of 35 to 40°C, and a urea concentration of 0.5%. Notably, irrespective of CaCO3 precipitation, the strain DW018 was able to utilize MICP to promote the attachment of Tb3+ to its cell surface. Initially, Tb3+ existed in amorphous form on the bacterial surface; however, upon the addition of a calcium source, Tb3+ was encapsulated in calcite with the growth of CaCO3 at the late stage of the MICP. The recovery effect of the strain DW018 was related to the amino, hydroxyl, carboxyl, and phosphate groups on the cell surface. Overall, the MICP system is promising for the green and efficient recovery of rare earth ions from wastewaters.

12.
ACS Biomater Sci Eng ; 10(5): 2703-2724, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38644798

RESUMEN

The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.


Asunto(s)
Terbio , Humanos , Terbio/química , Animales , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Ingeniería de Tejidos/métodos , Nanomedicina Teranóstica/métodos , Sistemas de Liberación de Medicamentos/métodos
13.
PET Clin ; 19(3): 307-323, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38688775

RESUMEN

Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.


Asunto(s)
Partículas alfa , Partículas beta , Radioisótopos , Radiofármacos , Humanos , Partículas beta/uso terapéutico , Partículas alfa/uso terapéutico , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico , Neoplasias/radioterapia , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Masculino , Lutecio/uso terapéutico , Radio (Elemento)/uso terapéutico , Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124114, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447441

RESUMEN

A ratiometric luminescent probe was fabricated using adenosine monophosphate (AMP) as a bridging ligand and 3-carboxyphenylboronic acid (3-CPBA) as the sensitizer and functional ligand that allowed the probe to recognize hydrogen peroxide (H2O2). The probe was labeled AMP-Tb/3-CPBA. Adding H2O2 caused the nonluminescent 3-CPBA to be converted into 3-hydroxybenzoic acid, which strongly luminesces at 401 nm. This meant that adding H2O2 decreased the AMP-Tb/3-CPBA luminescence intensity at 544 nm and caused luminescence at 401 nm. The 401 and 544 nm luminescence intensity ratio (I401/I544) was strongly associated with the H2O2 concentration between 0.1 and 60.0 µM, and the detection limit was 0.23 µM. Dual emission reverse-change ratio luminescence sensing using the probe allowed environmental effects to be excluded and the assay to be very selective. We believe that the results pave the way for the development of new functionalized lanthanide coordination polymers for use in luminescence assays.


Asunto(s)
Polímeros , Terbio , Peróxido de Hidrógeno , Luminiscencia , Ligandos , Adenosina Monofosfato
15.
J Fluoresc ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457077

RESUMEN

Tb(III)-2-aminoterphthalate complex Tb2-(ATPh)3 was synthesized and characterized using FT-IR, thermal analysis and elemental analysis. Tb2(ATPh)3 microtiter plate was fabricated through embedding Tb(III) complex in polyvinyl chloride membrane and used for environmental determination of phenol in sea water samples. The calculated detection (DL), quantification (QL) limits, and binding constant (KD) were 00.63 µmol L- 1, 2.10 µmol L- 1 and 1.32 × 104 mol- 1 L, respectively. The fabricated microtiter plates exhibited high selectivity towards phenol over other hydrocarbon compounds. Furthermore, AGREE metric tool was used to assess the method's green nature as well as its practicability and applicability. These merit outcomes provide that the new method for phenol detection was environmentally benign and safe to humans. The prepared Tb2(ATPh)3 MTP was validated through using gas chromatography for monitoring phenol in Suez Bay water accurately with high precision. The obtained results encouraged using Tb2(ATPh)3 MTP for efficient, fast, selective, and direct screening of phenol in real samples.

16.
EJNMMI Phys ; 11(1): 26, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485872

RESUMEN

BACKGROUND: 155Tb represents a potentially useful radionuclide for diagnostic medical applications, but its production remains a challenging problem, in spite of the fact that many production routes have been already investigated and tested. A recent experimental campaign, conducted with low-energy proton beams impinging on a 155Gd target with 91.9% enrichment, demonstrated a significant co-production of 156gTb, a contaminant of great concern since its half-life is comparable to that of 155Tb and its high-energy γ emissions severely impact on the dose released and on the quality of the SPECT images. In the present investigation, the isotopic purity of the enriched 155Gd target necessary to minimize the co-production of contaminant radioisotopes, in particular 156gTb, was explored using various computational simulations. RESULTS: Starting from the recent experimental data obtained with a 91.9% 155Gd-enriched target, the co-production of other Tb radioisotopes besides 155Tb has been theoretically evaluated using the Talys code. It was found that 156Gd, with an isotopic content of 5.87%, was the principal contributor to the co-production of 156gTb. The analysis also demonstrated that the maximum amount of 156Gd admissible for 155Tb production with a radionuclidic purity higher than 99% was 1%. A less stringent condition was obtained through computational dosimetry analysis, suggesting that a 2% content of 156Gd in the target can be tolerated to limit the dose increase to the patient below the 10% limit. Moreover, it has been demonstrated that the imaging properties of the produced 155Tb are not severely affected by this level of impurity in the target. CONCLUSIONS: 155Tb can be produced with a quality suitable for medical applications using low-energy proton beams and 155Gd-enriched targets, if the 156Gd impurity content does not exceed 2%. Under these conditions, the dose increase due to the presence of contaminant radioisotopes remains below the 10% limit and good quality images, comparable to those of 111In, are guaranteed.

17.
Theranostics ; 14(4): 1720-1743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389843

RESUMEN

Terbium features four clinically interesting radionuclides for application in nuclear medicine: terbium-149, terbium-152, terbium-155, and terbium-161. Their identical chemical properties enable the synthesis of radiopharmaceuticals with the same pharmacokinetic character, while their distinctive decay characteristics make them valuable for both imaging and therapeutic applications. In particular, terbium-152 and terbium-155 are useful candidates for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, respectively; whereas terbium-149 and terbium-161 find application in α- and ß--/Auger electron therapy, respectively. This unique characteristic makes the terbium family ideal for the "matched-pair" principle of theranostics. In this review, the advantages and challenges of terbium-based radiopharmaceuticals are discussed, covering the entire chain from radionuclide production to bedside administration. It elaborates on the fundamental properties of terbium, the production routes of the four interesting radionuclides and gives an overview of the available bifunctional chelators. Finally, we discuss the preclinical and clinical studies as well as the prospects of this promising development in nuclear medicine.


Asunto(s)
Medicina Nuclear , Terbio , Medicina de Precisión , Radiofármacos/uso terapéutico , Radioisótopos/uso terapéutico , Tomografía de Emisión de Positrones
18.
Talanta ; 271: 125732, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309109

RESUMEN

The increasing demands in fields of anti-counterfeiting, fluorescence analysis, clinical therapy and LED illumination are urgently eager for more excellent optically switchable luminescent materials with the stable and multimodal fluorescence in single-component matrix. Herein, the lanthanide-disalicylaldehyde coordination hybrid H2Qj4/TbxEuy is proposed as an efficient luminescent matrix to connect terbium sensibilization with ESIPT (excited-state intramolecular proton transfer) effects, and three multi-emission hybrids are finally designed and synthesized by regulating Tb3+ and Eu3+ ratios. Surprisingly, the H2Qj4/Tb0.91Eu0.09 shows the excitation wavelength-dependent luminescence in solution which originates from two energy transfer ways of terbium sensibilization effect. It exhibits green and red lights under the 369 and 394 nm UV lamp, respectively. Three hybrids are further used as lab-on-a-molecule fluorescent probes to perform multianalyte detection for various solvents by selected fluorescent sensing channels. By means of PCA (principal component analysis) and HCA (hierarchical cluster analysis), all of them can successfully detect and discriminate17 common solvents, especially the H2O and D2O. Moreover, the H2Qj4/Tb0.91Eu0.09 also shows the wide linear responses of H2O content in D2O, discrimination of two-component solvent mixtures, hygroscopicity evaluation of D2O and information encryption which will advance the progress of multimodal luminescent materials and multianalyte chemosensors.

19.
Gels ; 10(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38391434

RESUMEN

In this study, we report a novel synthesis of hydrophobic silica aerogel powder composites, functionalized and binary-doped with [Tb(phen)2](NO3)3 and [Eu(phen)2](NO3)3 nanocrystals, employing a two-step sol-gel methodology. The investigation delves into the structural elucidation, optical properties and thermal conductivity of these functionalized Tb(III)-Eu(III) composites. Our analysis includes diffuse reflectance spectra and excitation and luminescence spectra, highlighting the quantum yields of composites with varying chemical compositions. Remarkably, these samples exhibit a strong luminescence, with distinct hues of red or green based on the specific doping type and level. The detailed examination of excitation spectra and quantum yields establishes robust energy-transfer mechanisms from the 1,10-phenanthroline molecule to the lanthanide ions. Notably, our study uncovers a Tb3⁺→Eu3⁺ energy-transfer phenomenon within the binary functionalized samples, providing compelling evidence for a structural formation process occurring within the mesoporous framework of the aerogel powders.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38376741

RESUMEN

Terbium vanadate nanowires were synthesized via a facile chemical approach using sodium vanadate and terbium chloride. Morphology, structure, composition, and electrochemical characteristics of the terbium vanadate nanowires were investigated by different techniques. Terbium vanadate nanowires with single crystalline tetragonal TbVO4 phase possess smooth surface and flat tips. The length of the nanowires is longer than 5 µm, and diameter is 40-100 nm. Terbium vanadate nanowires modified electrode was used for trace-level mercury ions (Hg2+) detection. One well-defined stripping peak exists at - 0.34 V at the terbium vanadate nanowires modified electrode in 0.1 mM Hg2+ solution. Buffer solution pH value, deposition time, deposition potential, and standing time are pH = 1, 150 s, - 1.5 V, and 60 s, respectively. Detection limit for Hg2+ detection is 0.18 nM, and linear range is 0.01-100 µM. The proposed terbium vanadate nanowires modified electrode exhibits significant selectivity, stability, and reproducibility toward Hg2+. The usefulness of the developed sensor based on the terbium vanadate nanowires modified electrode was verified by Hg2+ detection in real samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA