Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros











Intervalo de año de publicación
1.
Small ; : e2405859, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286888

RESUMEN

Copper Sulfide (CuS) semiconductors have garnered interest, but the effect of transition metal doping on charge carrier kinetics and bandgap remains unclear. In this study, the interactions between dopant atoms (Nickel, Cobalt, and Manganese) and the CuS lattice using spectroscopy and electrochemical analysis are explored. The findings show that sp-d exchange interactions between band electrons and the dopant ions, which replace Cu2+, are key to altering the material's properties. Specifically, these interactions result in a reduced bandgap by shifting the conduction and valence band edges and increasing carrier concentration. It is observed that undoped CuS nanoflowers exhibit a carrier lifetime of 2.16 ns, whereas Mn-doped CuS shows an extended lifetime of 2.62 ns. This increase is attributed to longer carrier scattering times (84 ± 5 fs for Mn-CuS compared to 53 ± 14 fs for CuS) and slower trapping (∼1.5 ps) with prolonged de-trapping (∼100 ps) rates. These dopant-induced energy levels enhance mobility and carrier lifetime by reducing recombination rates. This study highlights the potential of doped CuS as cathode materials for sodium-ion batteries and emphasizes the applicability of metal sulfides in energy solutions.

2.
Small ; : e2401151, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087386

RESUMEN

Graphene-based terahertz (THz) devices have emerged as promising platforms for a variety of applications, leveraging graphene's unique optoelectronic properties. This review explores recent advancements in utilizing graphene in THz technology, focusing on two main aspects: THz molecular sensing and THz wave modulation. In molecular sensing, the environment-sensitive THz transmission and emission properties of graphene are utilized for enabling molecular adsorption detection and biomolecular sensing. This capability holds significant potential, from the detection of pesticides to DNA at high sensitivity and selectivity. In THz wave modulation, crucial for next-generation wireless communication systems, graphene demonstrates remarkable potential in absorption modulation when gated. Novel device structures, spectroscopic systems, and metasurface architectures have enabled enhanced absorption and wave modulation. Furthermore, techniques such as spatial phase modulation and polarization manipulation have been explored. From sensing to communication, graphene-based THz devices present a wide array of opportunities for future research and development. Finally, advancements in sensing techniques not only enhance biomolecular analysis but also contribute to optimizing graphene's properties for communication by enabling efficient modulation of electromagnetic waves. Conversely, developments in communication strategies inform and enhance sensing capabilities, establishing a mutually beneficial relationship.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124897, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094271

RESUMEN

Assessing crop seed phenotypic traits is essential for breeding innovations and germplasm enhancement. However, the tough outer layers of thin-shelled seeds present significant challenges for traditional methods aimed at the rapid assessment of their internal structures and quality attributes. This study explores the potential of combining terahertz (THz) time-domain spectroscopy and imaging with semantic segmentation models for the rapid and non-destructive examination of these traits. A total of 120 watermelon seed samples from three distinct varieties, were curated in this study, facilitating a comprehensive analysis of both their outer layers and inner kernels. Utilizing a transmission imaging modality, THz spectral images were acquired and subsequently reconstructed employing a correlation coefficient method. Deep learning-based SegNet and DeepLab V3+ models were employed for automatic tissue segmentation. Our research revealed that DeepLab V3+ significantly surpassed SegNet in both speed and accuracy. Specifically, DeepLab V3+ achieved a pixel accuracy of 96.69 % and an intersection over the union of 91.3 % for the outer layer, with the inner kernel results closely following. These results underscore the proficiency of DeepLab V3+ in distinguishing between the seed coat and kernel, thereby furnishing precise phenotypic trait analyses for seeds with thin shells. Moreover, this study accentuates the instrumental role of deep learning technologies in advancing agricultural research and practices.


Asunto(s)
Citrullus , Semillas , Semillas/química , Citrullus/química , Imágen por Terahertz/métodos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Terahertz/métodos , Semántica
4.
ACS Nano ; 18(32): 21376-21387, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088237

RESUMEN

Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.

5.
J Phys Condens Matter ; 36(43)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029502

RESUMEN

Motivated by the recent developments in terahertz spectroscopy using pump-probe setups to study correlated electronic materials, we review the field theoretical formalism to compute finite frequency nonlinear electro-optical responses in centrosymmetric systems starting from basic time dependent perturbation theory. We express the nonlinear current kernel as a sum of several causal response functions. These causal functions cannot be evaluated using perturbative field theory methods, since they are not contour ordered. Consequently, we associate each response function with a corresponding imaginary time ordered current correlation function, since the latter can be factorized using Wick's theorem. The mapping between the response functions and the correlation functions, suitably analytically continued to real frequencies, is proven exactly. We derive constraints satisfied by the nonlinear current kernel and we prove a generalizedf-sum rule for the nonlinear conductivity, all of which are consequences of particle number conservation. The constraints guarantee that the nonlinear static responses are free from spurious divergences. We apply the theory to compute the gauge invariant nonlinear conductivity of a system of noninteracting electrons in the presence of weak disorder. As special cases of this generalized nonlinear response, we discuss its third harmonic and its instantaneous terahertz Kerr signals. The formalism can be used to compute the nonlinear conductivity in symmetry broken phases of electronic systems such as superconductors, density waves and nematic states.

6.
Talanta ; 278: 126489, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959667

RESUMEN

Pyrazinamide (PZA) is a widely-used anti-tuberculosis pharmaceutical, but its poor solubility prompts us to optimize pharmaceutical performance. Cocrystallization is a promising technique to improve physiochemical properties of active pharmaceutical ingredient (API) by connecting it with cocrystal former (CCF) via intermolecular interactions. Even though a series of alkyl dicarboxylic acids are employed to form cocrystal structures, systematic understanding on the role of intermolecular interactions is still missing. Therefore, terahertz (THz) spectroscopy and quantum chemical calculation are combined to elucidate the behavior of ubiquitous supramolecular synthons, such as hetero-synthons of acid-pyrazine, acid-amide and homo-synthon of amide-amide, from energy's view. Potential energy is calculated to differentiate the stability within polymorphs of PZA-MA cocrystal and free energy is evaluated to compare the solubility of PZA-CCF cocrystals respectively. With regard to vibrational energy, THz spectral fingerprints are theoretically assigned to specific vibrations and attributed to the flexibility deformation of supramolecular synthons based on oscillation theory, where stretching and twisting modes dominate the collective vibrational behavior. It provides a promising tool to evaluate cocrystal performance from its driving force and insightful guidance to discover new pharmaceutical cocrystals.

7.
Front Optoelectron ; 17(1): 24, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073673

RESUMEN

The inadequate stability of organic-inorganic hybrid perovskites remains a significant barrier to their widespread commercial application in optoelectronic devices. Aging phenomena profoundly affect the optoelectronic performance of perovskite-based devices. In addition to enhancing perovskite stability, the real-time detection of aging status, aimed at monitoring the aging progression, holds paramount importance for both fundamental research and the commercialization of organic-inorganic hybrid perovskites. In this study, the aging status of perovskite was real-time investigated by using terahertz time-domain spectroscopy. Our analysis consistently revealed a gradual decline in the intensity of the absorption peak at 0.968 THz with increasing perovskite aging. Furthermore, a systematic discussion was conducted on the variations in intensity and position of the terahertz absorption peaks as the perovskite aged. These findings facilitate the real-time assessment of perovskite aging, providing a promising method to expedite the commercialization of perovskite-based optoelectronic devices.

8.
Biosensors (Basel) ; 14(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39056614

RESUMEN

Terahertz spectroscopy has unique advantages in the study of biological molecules in aqueous solutions. However, water has a strong absorption capability in the terahertz region. Reducing the amount of liquid could decrease interference with the terahertz wave, which may, however, affect the measurement accuracy. Therefore, it is particularly important to balance the amount and water content of liquid samples. In this work, a terahertz metamaterial sensor based on metallic strips is designed, fabricated, and used to detect reverse micelles. An aqueous confinement environment in reverse micelles can improve the signal-to-noise ratio of the terahertz response. Due to "water pool" trapped in reverse micelles, the DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) solution and DOPC emulsion can successfully be identified in intensity by terahertz spectroscopy. Combined with the metamaterial sensor, an obvious frequency shift of 30 GHz can be achieved to distinguish the DOPC emulsion (5%) from the DOPC solution. This approach may provide a potential way for improving the sensitivity of detecting trace elements in a buffer solution, thus offering a valuable toolkit toward bioanalytical applications.


Asunto(s)
Micelas , Espectroscopía de Terahertz , Técnicas Biosensibles , Metales/química , Fosfatidilcolinas/química , Agua/química
9.
Cancers (Basel) ; 16(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001516

RESUMEN

The paper describes the statistical analysis of the response of gastric cancer cells and normal cells to broadband terahertz radiation up to 4 THz, both with and without the use of nanostructured contrast agents. The THz spectroscopy analysis was comparatively performed under the ATR procedure and transmission measurement procedure. The statistical analysis was conducted towards multiple pairwise comparisons, including a support medium (without cells) versus a support medium with nanoparticles, normal cells versus normal cells with nanoparticles, and, respectively, tumor cells versus tumor cells with nanoparticles. When generally comparing the ATR procedure and transmission measurement procedure for a broader frequency domain, the differentiation between normal and tumor cells in the presence of contrast agents is superior when using the ATR procedure. THz contrast enhancement by using contrast agents derived from MRI-related contrast agents leads to only limited benefits and only for narrow THz frequency ranges, a disadvantage for THz medical imaging.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124563, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861828

RESUMEN

Terahertz time-domain spectroscopy (THz-TDS) is an emerging optical technique that has potential applications in the characterization of (bio)materials. However, the complicated extraction of optical parameters from multi-layered and optically thin samples is a barrier towards its acceptance by applied scientists. Therefore, the aim of this work is to provide a straightforward approach for the extraction of the THz absorption coefficient and index of refraction profiles of aqueous thin films in a window-sample-window configuration, which is ubiquitous in many laboratories (i.e., sample in a cuvette). A numerical approach-based methodology that accounts for multiple layers, Fabry-Pérot effect, and sample thickness is elaborated which involves an optical interference model based on a tri-layer structure and a simple thickness estimation technique. This method was validated on water samples where a good agreement was found with the THz optical parameters of water reported in the literature, while the use of a commercial software resulted in erroneous optical parameters estimates when used without due regard to its limitations. A case study was then performed to demonstrate the ability of the proposed method to characterize agarose hydrogels with varying degree of sulfation. It was demonstrated that THz-TDS can provide insight into the hydration state of the agarose hydrogels, including the relative number of the hydrogen bonds between the hydroxyl moieties of water and the polysaccharide network which is perturbed by the presence of sulfate. The trend in the index of refraction profiles suggested microstructural differences between the agarose hydrogels, which were confirmed by visualizing the agarose network morphology using cryo-SEM imaging.

11.
Nano Lett ; 24(26): 7852-7860, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904438

RESUMEN

Thin-film stacks F|H consisting of a ferromagnetic-metal layer F and a heavy-metal layer H are spintronic model systems. Here, we present a method to measure the ultrabroadband spin conductance across a layer X between F and H at terahertz frequencies, which are the natural frequencies of spin-transport dynamics. We apply our approach to MgO tunneling barriers with thickness d = 0-6 Å. In the time domain, the spin conductance Gs has two components. An instantaneous feature arises from processes like coherent spin tunneling. Remarkably, a longer-lived component is a hallmark of incoherent resonant spin tunneling mediated by MgO defect states, because its relaxation time grows monotonically with d to as much as 270 fs at d = 6.0 Å. Our results are in full agreement with an analytical model. They indicate that terahertz spin-conductance spectroscopy will yield new and relevant insights into ultrafast spin transport in a wide range of spintronic nanostructures.

12.
Food Res Int ; 186: 114400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729703

RESUMEN

Since hydrothermal treatments can enhance resistant starch (RS) content in rice and provide health benefits when consumed, a less laborious and non-destructive method to determine RS content is needed. Terahertz (THz) spectroscopy is hypothesized as a suitable method to quantify RS content in rice after hydrothermal treatment with its sensitivity for the intermolecular forces increase in the formation of RS. In this study, we first used the traditional in vitro hydrolysis method to determine the content of RS in rice. Then, the potential of starch absorbance peaks to quantify RS content after three commonly used hydrothermal methods, soaking, mild heat-moisture treatment, and parboiling, was investigated. The second derivative intensities of the peak at 9.0, 10.5, 12.1, and 13.1 THz were confirmed as being correlated with RS content and showed the high accuracy to predict RS content in samples (R2 > 0.96). Our results indicate the RS content of hydrothermally treated rice can be accurately quantified using these peaks.


Asunto(s)
Calor , Oryza , Almidón , Espectroscopía de Terahertz , Oryza/química , Almidón/análisis , Espectroscopía de Terahertz/métodos , Hidrólisis , Almidón Resistente/análisis , Manipulación de Alimentos/métodos , Agua/química
13.
Nano Lett ; 24(22): 6753-6760, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708988

RESUMEN

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

14.
Gels ; 10(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786241

RESUMEN

Metal-coordinated hydrogels are becoming increasingly popular in the biomedical field due to their unique properties. However, the mechanism behind gel forming involving metal ions is not yet fully understood. In this work, terahertz spectroscopy was used to investigate the role of interfacial water in the gelation process of copper ion-coordinated poly(vinyl alcohol) hydrogels. The results showed that the binding of copper ions could alter the interfacial hydration dynamics of the poly(vinyl alcohol) polymers. Combined with the results of differential scanning calorimetry (DSC), we propose a possible hydration layer-mediated mechanism for the formation of cooper ion-coordinated hydrogel during the freeze-thaw cycle. These results highlight the value of terahertz spectroscopy as a sensor for studying the hydration process in hydrogels and provide an important clue for understanding the mechanism of hydrogelation in ion-coordinated hydrogels.

15.
Angew Chem Int Ed Engl ; 63(26): e202405333, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38623864

RESUMEN

Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M=Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.

16.
J Oleo Sci ; 73(4): 419-427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556277

RESUMEN

Phospholipids and surfactants form membranes and other self-assembled structures in water. However, it is not fully understood how the surrounding water (hydration water) is involved in their structure formation. In this paper, I summarize the results of our investigation of the long-range hydration state of phospholipids and surfactants at their surfaces by means of terahertz spectroscopy. By observing the collective rotational dynamics of water in the picosecond time scale, this technique allows us to observe not only the water directly bound to the solute, but also the weakly affected water outside of it. For example, PC phospholipids inhibit water dynamics over long distances, whereas PE phospholipids make water more mobile than bulk water. The causes of this difference in hydration and how it is involved in the structural formation of the membrane are reviewed.


Asunto(s)
Surfactantes Pulmonares , Espectroscopía de Terahertz , Lipoproteínas , Fosfolípidos/química , Tensoactivos , Espectroscopía de Terahertz/métodos , Agua/química
17.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339180

RESUMEN

To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.


Asunto(s)
Acil-Butirolactonas , Espectroscopía de Terahertz , Acil-Butirolactonas/química , Simulación de Dinámica Molecular , Percepción de Quorum , Estructura Molecular , Lactonas
18.
Nano Lett ; 24(8): 2529-2536, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349889

RESUMEN

Our study highlights the versatility of tip-assisted terahertz spectroscopy in probing coherent magnons, the elementary quanta of spin waves in magnetic materials. We identify two distinct coherent magnon types in canted antiferromagnet YFeO3. The remarkable consistency with far-field terahertz spectroscopy in crucial magnon parameters, such as coherence time and resonance frequency, firmly establishes the credibility of tip-assisted terahertz spectroscopy. Notably, we capture more coherent ferromagnetic magnons near the sample surface, underscoring the strength of the technique. This approach paves the way for local, free-standing, and real-space investigations of spin waves in solid magnets.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123804, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181620

RESUMEN

Aromatic polyurea has garnered assiduous research due to its excellent impact, shock, abrasion, moisture, and chemical resistance properties. Polyurea can be used in protective coating and impact mitigation applications but is inevitably exposed to harsh deployment conditions such as extended ultraviolet (UV) radiation. Fourier Transform Infrared (FTIR) spectroscopy, Terahertz-time domain spectroscopy (THz-TDS), and Excitation-Emission Matrix spectroscopy (EEMS) deciphered the effects of UV radiation on radiated polyurea samples under ambient and nitrogen-rich conditions. Samples were radiated continuously for up to 15 weeks in increments of 3 weeks. Comprehensive FTIR analyses revealed a monotonic increase in disordered hydrogen bonding as a function of exposure duration in an ambient environment. Otherwise, marginal changes were observed in UV-radiated samples under nitrogen. The hydrogen bond length exhibited significant variations in the former compared to their nitrogen atmosphere counterparts. The results infer the nitrogen shielding effect, protecting polyurea from the photodegradation and photo-oxidation observed in samples radiated under the ambient atmosphere. THz-TDS spectra affirmed the FTIR results by probing changes in the complex refractive index. Terahertz spectral peaks associated with torsional vibrations of intermolecular hydrogen bonds in polyurea were notably correlated with increased exposure duration in the ambient atmosphere. Changes in the complex index as a function of exposure duration under nitrogen are minimal. The excitation-emission spectra of polyurea samples reveal a strong fluorescent behavior in 9-week and 12-week ambient-exposed polyurea due to cluster-triggered emission mechanisms. The results synthesized based on three different spectroscopy techniques paint a holistic portrait of the adverse effects of extended ultraviolet radiation of macromolecules deployed in harsh environmental conditions.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123869, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198992

RESUMEN

Polymorphism commonly exists in organic molecular crystals. The fingerprint features in low-frequency vibrational range are important information reflecting different intermolecular interactions of polymorphs. Interpreting these features is very helpful to understand vibrational property of polymorphs and reveal the thermodynamic stability. In this work, the low-frequency vibrations of form I and II of vanillin are investigated using terahertz time-domain spectroscopy. Static DFT calculation and ab initio molecular dynamics (AIMD) are employed to interpret their low-frequency vibrations of both forms in harmonic and anharmonic ways, respectively. Their low-frequency vibration characteristics in harmonic calculations are discussed, and anharmonic mode couplings between OH bond stretch and the stretching and bending motion of hydrogen bonds are uncovered. Moreover, the thermodynamic energies including electronic potential energy and vibrational/kinetic energy arising from nuclear motions are calculated. The result reveals that the stability order of the two forms is mainly dependent on their electric potential energy difference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA