Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713216

RESUMEN

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Asunto(s)
Polifenoles , Schisandra , Polifenoles/análisis , Cromatografía Líquida de Alta Presión , Fitoquímicos/análisis , Antioxidantes/análisis , Reactores Biológicos , Técnicas de Cultivo , Schisandra/química , Schisandra/crecimiento & desarrollo
2.
Methods Mol Biol ; 2759: 193-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285151

RESUMEN

The Guadalupe cypress (Cupressus guadalupensis S. Watson) is an endangered species included in the list of the NOM-059-SEMARNAT-2010. The presence of wild goats in the habitat has been the greatest threat to the propagation and survival of this species. Therefore, there is a need to generate propagation protocols that facilitate the regeneration of the species. Plant tissue culture offers various possibilities that can facilitate the regeneration of species under some risk. Temporary immersion systems have proven to be an option with various advantages in plant tissue culture, such as increasing the number of seedlings generated and reducing production times, compared to semisolid media. The objective of this chapter is to describe a protocol to propagate Guadalupe cypress tissues in a RITA® temporary immersion system.


Asunto(s)
Cupressus , Animales , Inmersión , Cabras , Reproducción , Plantones
3.
Methods Mol Biol ; 2759: 183-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285150

RESUMEN

The low multiplication and ex vitro survival rates during acclimatization in the culture house limit the in vitro mass propagation of B. vulgaris. Several scientific studies have described the development of different protocols for bamboo; however, not all of them address the effects of these systems on plant morphology, physiology, and biochemistry in vitro. In this chapter, a complete and optimized protocol is described for plants propagated via organogenesis in temporary immersion systems. In addition, the morphophysiological and biochemical characterization of the plants as well as the survival rates of the obtained plants under ex vitro conditions are analyzed. The obtained results will be the basis for the development of a technology for in vitro propagation as an alternative for the production of plants of the species.


Asunto(s)
Bambusa , Inmersión , Aclimatación , Reproducción , Tecnología
4.
Methods Mol Biol ; 2759: 217-225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285153

RESUMEN

Salvia is a very valuable medicinal plant for the pharmaceutical industry. Tissue culture techniques can be used to increase the number of plants in a shorter time. Although protocols for in vitro propagation of more than 15 plant species have been developed, they are not yet efficient enough to increase mass propagation of plants. Therefore, the use of temporary immersion systems is necessary to increase the morphological quality of plants as well as their biomass in several Salvia species. In this chapter, progress in in vitro propagation in several Salvia species using liquid medium and automation is described.


Asunto(s)
Inmersión , Salvia , Biomasa , Automatización , Industria Farmacéutica
5.
Molecules ; 27(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235218

RESUMEN

The study investigated the effect of elicitation with: chitosan (CH) (200 mg/L), yeast extract (YeE) (3000 mg/L), ethephon (ETH) (25 µM/L), and methyl jasmonate (MeJA) (50 µM/L), on lignan accumulation in agitated and bioreactor (Plantform temporary immersion systems) microshoot cultures of female (F) and male (M) Schisandra rubriflora Rehd. et Wils. (Schisandraceae) lines. The elicitors were supplemented on the 10th day of culture. Biomasses were collected at 24 h and 48 h, and 4, 6, and 8 days after the addition of each elicitor. The 24 compounds from the dibenzocyclooctadiene, aryltetralin, dibenzylbutane, and tetrahydrofuran lignans and neolignans were determined qualitatively and quantitatively in biomass extracts using the UHPLC-MS/MS method. The highest total contents [mg/100 g DW] of lignans were: for CH-95.00 (F, day 6) and 323.30 (M, 48 h); for YeE 104.30 (F, day 8) and 353.17 (M, day 4); for ETH 124.50 (F, 48 h) and 334.90 (M, day 4); and for MeJA 89.70 (F, 48 h) and 368.50 (M, 24 h). In the biomass extracts of M cultures grown in bioreactors, the highest total lignan content was obtained after MeJA elicitation (153.20 mg/100 g DW). The maximum total lignan contents in the biomass extracts from agitated and bioreactor cultures were 3.29 and 1.13 times higher, respectively, than in the extracts from the non-elicited cultures. The poor understanding of the chemical composition and the lack of studies in the field of plant biotechnology of S. rubriflora emphasize the innovativeness of the research.


Asunto(s)
Quitosano , Lignanos , Schisandra , Acetatos , Quitosano/farmacología , Ciclopentanos , Furanos/farmacología , Lignanos/química , Oxilipinas , Brotes de la Planta/química , Schisandra/química , Espectrometría de Masas en Tándem
6.
Plants (Basel) ; 11(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161356

RESUMEN

The development of gamma ray-mutated rice lines is a solution for introducing genetic variability in indica rice varieties already being used by farmers. In vitro gamma ray (60Co) mutagenesis reduces chimeras and allows for a faster selection of desirable traits but requires the optimization of the laboratory procedure. The objectives of the present work were sequencing of matK and rbcL, the in vitro establishment of recalcitrant rice embryogenic calli, the determination of their sensitivity to gamma radiation, and optimization of the generation procedure. All sequenced genes matched perfectly with previously reported matK and rbcL O. sativa genes. Embryogenic calli induction improved using MS medium containing 2 mg L-1 2,4-D, and regeneration was achieved with MS medium with 3 mg L-1 BA and 0.5 mg L-1 NAA. The optimized radiation condition was 60 Gy, (LD20 = 64 Gy) with 83% regeneration. An immersion system (RITA®, Saint-Mathieu-de-Tréviers, France) of either 60 or 120 s every 8 h allowed systematic and homogeneous total regeneration of the recalcitrant line. Other well-known recalcitrant cultivars, CR1821 and CR1113, also had improved regeneration in the immersion system. To our knowledge, this is the first study reporting the use of an immersion system to allow for the regeneration of gamma-ray mutants from recalcitrant indica rice materials.

7.
Crit Rev Biotechnol ; : 1-15, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30431379

RESUMEN

Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA