Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.442
Filtrar
1.
Nutrients ; 16(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275328

RESUMEN

The psychological states of hunger and satiety play an important role in regulating human food intake. Several lines of evidence suggest that these states rely upon declarative learning and memory processes, which are based primarily in the medial temporal lobes (MTL). The MTL, and particularly the hippocampus, is unusual in that it is especially vulnerable to insult. Consequently, we examine here the impact on hunger and satiety of conditions that: (1) are central to ingestive behaviour and where there is evidence of MTL pathology (i.e., habitual consumption of a Western-style diet, obesity, and anorexia nervosa); and (2) where there is overwhelming evidence of MTL pathology, but where ingestive behaviour is not thought central (i.e., temporal lobe epilepsy and post-traumatic stress disorder). While for some of these conditions the evidence base is currently limited, the general conclusion is that MTL impairment is linked, sometimes strongly, to dysfunctional hunger and satiety. This focus on the MTL, and declarative learning and memory processes, has implications for the development of alternative treatment approaches for the regulation of appetite.


Asunto(s)
Hambre , Saciedad , Humanos , Hambre/fisiología , Saciedad/fisiología , Obesidad/psicología , Obesidad/fisiopatología , Conducta Alimentaria/psicología , Conducta Alimentaria/fisiología , Lóbulo Temporal/fisiopatología , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/psicología , Anorexia Nerviosa/psicología , Anorexia Nerviosa/fisiopatología , Memoria/fisiología , Hipocampo/fisiología , Aprendizaje , Ingestión de Alimentos/psicología , Ingestión de Alimentos/fisiología , Dieta Occidental/efectos adversos
2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273262

RESUMEN

Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.


Asunto(s)
Antioxidantes , Catalasa , Epilepsia del Lóbulo Temporal , Glutatión Peroxidasa , Levetiracetam , Estrés Oxidativo , Superóxido Dismutasa , Animales , Levetiracetam/farmacología , Levetiracetam/uso terapéutico , Ratas , Antioxidantes/metabolismo , Antioxidantes/farmacología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Masculino , Superóxido Dismutasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Oxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Ratas Wistar
3.
Childs Nerv Syst ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289197

RESUMEN

Temporal lobe epilepsy in children is often secondary to various low-grade glial and glioneural tumors and rarely secondary to mesial temporal sclerosis. Despite the benign nature, tumor-associated TLE in children often becomes refractory over time. Abundant literature has shown the significant advantage of tumor resection compared to conservative treatment, in achieving seizure control, as well as the rates of antiseizure medication reduction. Despite these advantages, several considerations are to be related to when considering surgery. These include the impact of surgery on linguistic and neurocognitive development, especially at the younger age; the extent of resection and the role of ECoG; and the need for mesial temporal resection. Over recent years, traditional resection has been complemented with newer treatment options such as laser ablation and biological treatment, and these should be taken into account depending on the exact location and the ability to perform extensive resection in eloquent regions. In this overview manuscript, we discuss the various considerations treating tumor-associated pediatric temporal epilepsy.

4.
Clin Neurol Neurosurg ; 246: 108550, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278006

RESUMEN

INTRODUCTION: Medically refractory epilepsy (MRE) occurs in about 30 % of patients with epilepsy, and the treatment options available to them have evolved over time. The classic treatment for medial temporal lobe epilepsy (mTLE) is anterior temporal lobectomy (ATL), but an initiative to find less invasive options has resulted in treatments such as neuromodulation, ablative procedures, and stereotactic radiosurgery (SRS). SRS has been an appealing non-invasive option and has developed an increasing presence in the literature over the last few decades. This article provides an overview of SRS for MRE with two example cases, and we discuss the optimal technique as well as the advantages, alternatives, and risks of this therapeutic option. CASES: We present two example cases of patients with MRE, who were poor candidates for invasive surgical treatment options and underwent SRS. The first case is a 65-year-old female with multiple medical comorbidities, whose seizure focus was localized to the left temporal lobe, and the second case is a 19-year-old male with Protein C deficiency and medial temporal lobe sclerosis. Both patients underwent SRS to targets within the medial temporal lobe, and both achieve significant improvements in seizure frequency and severity. DISCUSSION: SRS has generally been shown to be inferior to ATL for seizure reduction in medically refractory mTLE. However, there are patients with epilepsy for which SRS can be considered, such as patients with medical comorbidities that make surgery high risk, patients with epileptogenic foci in eloquent cortex, patients who have failed to respond to surgical management, patients who choose not to undergo surgery, and patients with geographic constraints to epilepsy centers. Patients and their physicians should be aware that SRS is not risk-free. Patients should be counseled on the latency period and monitored for risks such as delayed cerebral edema, visual field deficits, and radiation necrosis.

5.
World Neurosurg ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278540

RESUMEN

PURPOSE: Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE), and Stereoelectroencephalography (SEEG) plays a critical role in precisely localizing the epileptogenic zone (EZ). This study aimed to explore the effect of SEEG on the long-term outcomes of different side ATL. METHODS: From March 2012 to February 2020, a retrospective analysis was conducted on 231 TLE patients who underwent standard ATL surgery. According to the surgical sides and the utilization of SEEG during preoperative evaluation, the patients were categorized into four groups, with a follow-up period exceeding two years. RESULTS: Among the 231 TLE patients, the probability of being seizure-free two years after the surgery was 80.52%, which decreased to 65.65% after five years. There was no significant difference in outcomes between SEEG and non-SEEG patients. For overall and non-SEEG patients, there was no significant difference in short-term outcomes between different surgical sides. However, the long-term outcomes of right ATL patients were significantly better than left. Interestingly, for patients who underwent SEEG, there was no significant difference in both short-term and long-term outcomes between different surgical sides. CONCLUSION: Some TLE patients encounter challenges in localizing the EZ through non-invasive evaluation, necessitating the use of SEEG for precise localization. Furthermore, their seizure outcomes after surgery can be the same with the patients who have a clear epileptogenic zone in non-invasive evaluation. And SEEG patients can achieve a more stable long-term prognosis than non-SSEEG patients.

6.
Alzheimers Res Ther ; 16(1): 204, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285454

RESUMEN

BACKGROUND: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS: BioFINDER-2 participants with memory impairment, abnormal amyloid-ß and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-ß-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS: AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS: We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Tomografía de Emisión de Positrones , Lóbulo Temporal , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Atrofia/patología , Masculino , Femenino , Anciano , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Persona de Mediana Edad , Imagen por Resonancia Magnética , Proteínas tau/metabolismo , Edad de Inicio , Péptidos beta-Amiloides/metabolismo , Amnesia/patología , Amnesia/diagnóstico por imagen , Anciano de 80 o más Años
7.
Alzheimers Dement ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279366

RESUMEN

This paper for the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI) provides an overview of magnetic resonance imaging (MRI) of medial temporal lobe (MTL) subregions in ADNI using a dedicated high-resolution T2-weighted sequence. A review of the work that supported the inclusion of this imaging modality into ADNI Phase 3 is followed by a brief description of the ADNI MTL imaging and analysis protocols and a summary of studies that have used these data. This review is supplemented by a new study that uses novel surface-based tools to characterize MTL neurodegeneration across biomarker-defined AD stages. This analysis reveals a pattern of spreading cortical thinning associated with increasing levels of tau pathology in the presence of elevated amyloid beta, with apparent epicenters in the transentorhinal region and inferior hippocampal subfields. The paper concludes with an outlook for high-resolution imaging of the MTL in ADNI Phase 4. HIGHLIGHTS: As of Phase 3, the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) protocol includes a high-resolution T2-weighted MRI scan optimized for imaging hippocampal subfields and medial temporal lobe (MTL) subregions. These scans are processed by the ADNI core to obtain automatic segmentations of MTL subregions and to derive morphologic measurements. More detailed granular examination of MTL neurodegeneration in response to disease progression is achieved by applying surface-based modeling techniques. Surface-based analysis of gray matter loss in MTL subregions reveals increasing and spatially expanding patterns of neurodegeneration with advancing stages of Alzheimer's disease (AD), as defined based on amyloid and tau positron emission tomography biomarkers in accordance with recently proposed criteria. These patterns closely align with post mortem literature on spread of pathological tau in AD, supporting the role of tau pathology in the presence of elevated levels of amyloid beta as the driver of neurodegeneration.

8.
Biomark Res ; 12(1): 103, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272194

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) is among the most common types of epilepsy and often leads to cognitive, emotional, and psychiatric issues due to the frequent seizures. A notable pathological change related to TLE is hippocampal sclerosis (HS), which is characterized by neuronal loss, gliosis, and an increased neuron fibre density. The mechanisms underlying TLE-HS development remain unclear, but the reactive transcriptomic changes in glial cells and neurons of the hippocampus post-epileptogenesis may provide insights. METHODS: To induce TLE, 200 nl of kainic acid (KA) was stereotactically injected into the hippocampal CA1 region of mice, followed by a 7-day postinjection period. Single-cell RNA sequencing (ScRNA-seq), single-nucleus RNA sequencing (SnRNA-seq), and Xenium-based spatial transcriptomics analyses were employed to evaluate the changes in mRNA expression in glial cells and neurons. RESULTS: From the ScRNA-seq and SnRNA-seq data, 31,390 glial cells and 48,221 neuronal nuclei were identified. Analysis of the differentially expressed genes (DEGs) revealed significant transcriptomic alterations in the hippocampal cells of mice with TLE, affecting hundreds to thousands of mRNAs and their signalling pathways. Enrichment analysis indicated notable activation of stress and inflammatory pathways in the TLE hippocampus, while pathways related to axonal development and neural support were suppressed. Xenium analysis demonstrated the expression of all 247 genes across mouse brain sections, revealing the spatial distributions of their expression in 27 cell types. Integrated analysis of the DEGs identified via the three sequencing techniques revealed that Spp1, Trem2, and Cd68 were upregulated in all glial cell types and in the Xenium data; Penk, Sorcs3, and Plekha2 were upregulated in all neuronal cell types and in the Xenium data; and Tle4 and Sipa1l3 were downregulated in all glial cell types and in the Xenium data. CONCLUSION: In this study, a high-resolution single-cell transcriptomic atlas of the hippocampus in mice with TLE was established, revealing potential intrinsic mechanisms driving TLE-associated inflammatory activation and altered cell interactions. These findings provide valuable insights for further exploration of HS development and epileptogenesis.

9.
Clin Neurol Neurosurg ; 246: 108546, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39270463

RESUMEN

BACKGROUND AND OBJECTIVES: Surgical resections for lesions associated with intractable temporal lobe epilepsy (TLE) offers good seizure outcomes.However, the necessity of hippocampectomy in addition to lesionectomy is controversial, especially when the hippocampus is not involved by the lesion. Lesionectomy alone, preserving the hippocampus by an appropriate surgical approach, might offer good seizure outcomes while maintaining neurocognitive function. In the present study, the aims were to examine the surgical strategy for lesions associated with TLE and to present how to select surgical approaches to preserve the hippocampus. METHODS: A total of 22 consecutive lesion-associated TLE patients who underwent lesionectomy alone were retrospectively reviewed. The surgical approach, transsylvian, transorbital, subtemporal, supracerebellar transtentorial, or transcortical approach, was selected based on the location of the lesion. Postoperative seizure outcomes were classified by the Engel classification. Neurocognitive outcomes were assessed before and after surgery if possible. The pathology, the extent of resection, and lesion recurrence were reviewed. RESULTS: The transsylvian approach was selected in six patients, the transorbital approach in one patient, the subtemporal approach in three patients, the supracerebellar transtentorial approach in five patients, and the transcortical approach in seven patients. Eighteen of 22 (81.8 %) patients achieved Engel's class I or II good seizure outcomes. No patients had neurocognitive deterioration after surgery. Twelve patients had various types of brain tumors, and ten patients had non-tumorous lesions. Gross total resection was achieved in 21 patients. All patients had no recurrence. CONCLUSION: For patients with lesion-associated TLE, lesionectomy alone by the appropriate surgical approach offers satisfactory seizure outcomes while preserving hippocampus.

10.
Brain Commun ; 6(5): fcae284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234168

RESUMEN

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-centre study for model development; two-centre study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using several interictal EEG features derived from recent publications. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. Forty-seven patients (30 female; ages 20-69; 20 left-sided, 10 right-sided and 17 bilateral seizure onsets) were analysed for model development and internal validation. Nineteen patients (10 female; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analysed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. We replicated the finding that right temporal lobe epilepsy was harder to distinguish in a separate modality of resting-state functional MRI. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome. A potential clinical application of these findings could be to either support or oppose a hypothesis of unilateral temporal lobe epilepsy when deciding to pursue surgical resection or ablation as opposed to device implantation.

11.
Cureus ; 16(7): e65833, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39219947

RESUMEN

BACKGROUND: Alzheimer's disease (AD) patients suffer from cognitive dysfunction. This study assessed the structural magnetic resonance imaging (MRI) scoring among Alzheimer's patients (age ≥18 years) to correlate with dementia severity according to mini-mental state exam (MMSE) scores. METHODS: This cross-sectional study evaluated Bangladeshi adult AD patients from January 2018 to December 2022 who attended with subjective memory complaints and fulfilled the diagnostic and statistical manual of mental disorders criteria (DSM 5) for diagnosing dementia. The medial temporal lobe atrophy (MTA) and Koedam's score of the atrophy were measured utilising the 1.5 and 3 Tesla Magnetom symphony MRI systems. RESULTS: Of the 62 patients enrolled, the majority (39 cases; 62.9%) were aged over 60 years. Males were more predominant than females, with a male-to-female ratio of 2.6:1, and the moderate MMSE group consisted of 35.6% males and 64.7% females (P = 0.01). Further, MTA score severity is paradoxically associated with the MMSE score (P = 0.005). Additionally, we found a statistically significant negative correlation between the severity of the MMSE and only MTA scores (r = -0.350; 95% CI -0.551 to -0.110; P = 0.005). CONCLUSION: Structural magnetic resonance imaging among Alzheimer's patients is significantly correlated with the severity of dementia as per mini-mental state exam scores.

12.
Neurochem Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235578

RESUMEN

Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3ß inhibitor 6-bromoindirubin-3'-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/ß-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.

13.
Sci Rep ; 14(1): 20530, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227730

RESUMEN

Among patients with epilepsy, 30-40% experience recurrent seizures even after adequate antiseizure medications therapies, making them refractory. The early identification of refractory epilepsy is important to provide timely surgical treatment for these patients. In this study, we analyze interictal electroencephalography (EEG) data to predict drug refractoriness in patients with temporal lobe epilepsy (TLE) who were treated with monotherapy at the time of the first EEG acquisition. Various EEG features were extracted, including statistical measurements and interchannel coherence. Feature selection was performed to identify the optimal features, and classification was conducted using different classifiers. Functional connectivity and graph theory measurements were calculated to identify characteristics of refractory TLE. Among the 48 participants, 34 (70.8%) were responsive, while 14 (29.2%) were refractory over a mean follow-up duration of 38.5 months. Coherence feature within the gamma frequency band exhibited the most favorable performance. The light gradient boosting model, employing the mutual information filter-based feature selection method, demonstrated the highest performance (AUROC = 0.821). Compared to the responsive group, interchannel coherence displayed higher values in the refractory group. Interestingly, graph theory measurements using EEG coherence exhibited higher values in the refractory group than in the responsive group. Our study has demonstrated a promising method for the early identification of refractory TLE utilizing machine learning algorithms.


Asunto(s)
Anticonvulsivantes , Electroencefalografía , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Masculino , Adulto , Anticonvulsivantes/uso terapéutico , Persona de Mediana Edad , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/fisiopatología , Adulto Joven
14.
CNS Neurosci Ther ; 30(9): e14905, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39248455

RESUMEN

AIMS: We aimed to investigate mesial temporal lobe abnormalities in mesial temporal lobe epilepsy (MTLE) patients with hypersynchronous (HYP) and low-voltage fast rhythms (LVF) onset identified by stereotactic electroencephalography (SEEG) and evaluate their diagnostic and prognostic value. METHODS: Fifty-one MTLE patients were categorized as HYP or LVF by SEEG. High-resolution MRI volume-based analysis and 18F-FDG-PET standard uptake values of hippocampal and amygdala subfields were quantified and compared with 57 matched controls. Further analyses were conducted to delineate the distinct pathological characteristics differentiating the two groups. Diagnostic and prognostic prediction performance of these biomarkers were assessed using receiver operating characteristic curves. RESULTS: LVF-onset individuals demonstrated ipsilateral amygdala enlargement (p = 0.048) and contralateral hippocampus hypermetabolism (p = 0.042), pathological results often accompany abnormalities in the temporal lobe cortex, while HYP-onset subjects had significant atrophy (p < 0.001) and hypometabolism (p = 0.013) in ipsilateral hippocampus and its subfields, as well as amygdala atrophy (p < 0.001), pathological results are highly correlated with hippocampal sclerosis. Severe fimbria atrophy was observed in cases of HYP-onset MTLE with poor prognosis (AUC = 0.874). CONCLUSION: Individuals with different seizure-onset patterns display specific morphological and metabolic abnormalities in the amygdala and hippocampus. Identifying these subfield abnormalities can improve diagnostic and prognostic precision, guiding surgical strategies for MTLE.


Asunto(s)
Amígdala del Cerebelo , Electroencefalografía , Epilepsia del Lóbulo Temporal , Hipocampo , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Técnicas Estereotáxicas , Humanos , Femenino , Masculino , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Adulto , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/metabolismo , Electroencefalografía/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/patología , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Adulto Joven , Convulsiones/diagnóstico por imagen , Convulsiones/metabolismo , Fluorodesoxiglucosa F18
15.
Cureus ; 16(7): e64047, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39114195

RESUMEN

The uncommon, benign dysembryoplastic neuroepithelial tumor (DNET, WHO grade 1) is frequently linked to epilepsy. It is a glioneuronal neoplasm in the cerebral cortex of children or young adults defined by the presence of a pathognomonic glioneuronal element that may be linked to glial nodules and activating mutations of fibroblast growth factor receptor 1 (FGFR1) (CNS WHO grade 1 according to WHO classification of CNS and pituitary tumors, 2021 ). The cerebral cortex is primarily affected. The most frequent areas are the temporal lobe, particularly the medial lobe, frontal lobe, and other cortex. This study reports the instance of a 31-year-old male who had a history of seizures for the past 20 years and complained of a sudden headache and vomiting at the hospital. MRI revealed a cortical-based lesion in the left posterior temporo-occipital region. A biopsy sample was sent for histopathological examination. DNETs are usually benign, non-recurring lesions and rarely can be a malignant transformation. Although they are frequently stable tumors, surgical excision seldom results in recurrence.

16.
Front Netw Physiol ; 4: 1424004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114571

RESUMEN

Introduction: Neuropsychological assessment forms an integral part of the presurgical evaluation for patients with medically refractory focal epilepsy. Our understanding of cognitive impairment in epilepsy is based on seminal lesional studies that have demonstrated important structure-function relationships within the brain. However, a growing body of literature demonstrating heterogeneity in the cognitive profiles of patients with focal epilepsy (e.g., temporal lobe epilepsy; TLE) has led researchers to speculate that cognition may be impacted by regions outside the seizure onset zone, such as those involved in the interictal or "irritative" network. Methods: Neuropsychological data from 48 patients who underwent stereoelectroencephalography (SEEG) monitoring between 2012 and 2023 were reviewed. Patients were categorized based on the site of seizure onset, as well as their irritative network, to determine the impact of wider network activity on cognition. Neuropsychological data were compared with normative standards (i.e., z = 0), and between groups. Results: There were very few distinguishing cognitive features between patients when categorized based purely on the seizure onset zone (i.e., frontal lobe vs. temporal lobe epilepsy). In contrast, patients with localized irritative networks (i.e., frontal or temporal interictal epileptiform discharges [IEDs]) demonstrated more circumscribed profiles of impairment compared with those demonstrating wider irritative networks (i.e., frontotemporal IEDs). Furthermore, the directionality of propagation within the irritative network was found to influence the manifestations of cognitive impairment. Discussion: The findings suggest that neuropsychological assessment is sensitive to network activity beyond the site of seizure onset. As such, an overly focal interpretation may not accurately reflect the distribution of the underlying pathology. This has important implications for presurgical work-up in epilepsy, as well as subsequent surgical outcomes.

17.
Cogn Neurodyn ; 18(4): 1627-1639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104697

RESUMEN

The mesial temporal lobe epilepsy (MTLE) seizures are believed to originate from medial temporal structures, including the amygdala, hippocampus, and temporal cortex. Thus, the seizures onset zones (SOZs) of MTLE locate in these regions. However, whether the neural features of SOZs are specific to different medial temporal structures are still unclear and need more investigation. To address this question, the present study tracked the features of two different high frequency oscillations (HFOs) in the SOZs of these regions during MTLE seizures from 10 drug-resistant MTLE patients, who received the stereo electroencephalography (SEEG) electrodes implantation surgery in the medial temporal structures. Remarkable difference of HFOs features, including the proportions of HFOs contacts, percentages of HFOs contacts with significant coupling and firing rates of HFOs, could be observed in the SOZs among three medial temporal structures during seizures. Specifically, we found that the amygdala might contribute to the generation of MTLE seizures, while the hippocampus plays a critical role for the propagation of MTLE seizures. In addition, the HFOs firing rates in SOZ regions were significantly larger than those in NonSOZ regions, suggesting the potential biomarkers of HFOs for MTLE seizure. Moreover, there existed higher percentages of SOZs contacts in the HFOs contacts than in all SEEG contacts, especially those with significant coupling to slow oscillations, implying that specific HFOs features would help identify the SOZ regions. Taken together, our results displayed the features of HFOs in different medial temporal structures during MTLE seizures, and could deepen our understanding concerning the neural mechanism of MTLE.

18.
Synapse ; 78(5): e22307, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39171546

RESUMEN

To present the expression of calsyntenin-1 (Clstn1) in the brain and investigate the potential mechanism of Clstn1 in lithium-pilocarpine rat seizure models. Thirty-five male SD adult rats were induced to have seizures by intraperitoneal injection of lithium chloride pilocarpine. Rats exhibiting spontaneous seizures were divided into the epilepsy (EP) group (n = 15), whereas those without seizures were divided into the control group (n = 14). Evaluate the expression of Clstn1 in the temporal lobe of two groups using Western blotting, immunohistochemistry, and immunofluorescence. Additionally, 55 male SD rats were subjected to status epilepticus (SE) using the same induction method. Rats experiencing seizures exceeding Racine's level 4 (n = 48) were randomly divided into three groups: SE, SE + control lentivirus (lentiviral vector expressing green fluorescent protein [LV-GFP]), and SE + Clstn1-targeted RNA interference lentivirus (LV-Clstn1-RNAi). The LV-GFP group served as a control for the lentiviral vector, whereas the LV-Clstn1-RNAi group received a lentivirus designed to silence Clstn1 expression. These lentiviral treatments were administered via hippocampal stereotactic injection 2 days after SE induction. Seven days after SE, Western blot analysis was performed to evaluate the expression of Clstn1 in the hippocampus and temporal lobe. Meanwhile, we observed the latency of spontaneous seizures and the frequency of spontaneous seizures within 8 weeks among the three groups. The expression of Clstn1 in the cortex and hippocampus of the EP group was significantly increased compared to the control group (p < .05). Immunohistochemistry and immunofluorescence showed that Clstn1 was widely distributed in the cerebral cortex and hippocampus of rats, and colocalization analysis revealed that it was mainly co expressed with neurons in the cytoplasm. Compared with the SE group (11.80 ± 2.17 days) and the SE + GFP group (12.40 ± 1.67 days), there was a statistically significant difference (p < .05) in the latency period of spontaneous seizures (15.14 ± 2.41 days) in the SE + Clstn1 + RNAi group rats. Compared with the SE group (4.60 ± 1.67 times) and the SE + GFP group (4.80 ± 2.05 times), the SE + Clstn1 + RNAi group (2.0 ± .89 times) showed a significant reduction in the frequency of spontaneous seizures within 2 weeks of chronic phase in rats (p < .05). Elevated Clstn1 expression in EP group suggests its role in EP onset. Targeting Clstn1 may be a potential therapeutic approach for EP management.


Asunto(s)
Modelos Animales de Enfermedad , Pilocarpina , Ratas Sprague-Dawley , Convulsiones , Animales , Masculino , Pilocarpina/toxicidad , Ratas , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Neurocalcina/metabolismo , Neurocalcina/genética , Hipocampo/metabolismo , Cloruro de Litio , Lóbulo Temporal/metabolismo , Encéfalo/metabolismo
19.
Epilepsy Behav Rep ; 27: 100701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184193

RESUMEN

Late-onset epilepsy, particularly focal impaired awareness seizures, often present without convulsions and can cause memory impairment. This can lead patients to initially seek consultation at memory clinics, potentially delaying referral to epilepsy specialists. We report on three patients, aged 40s to 70s, admitted for cognitive evaluation who were finally diagnosed with epileptic seizures as the underlying cause of their symptoms. Notably, all initially presented to local clinics with symptoms suggesting cognitive impairment. Despite initial diagnostic uncertainty, all patients exhibited epileptic activity on electroencephalography (EEG) and responded positively to antiepileptic drugs, suggesting epileptic mechanisms were involved in their symptoms. Both traditional clinical EEG systems and newly developed, one-minute portable EEG devices were used in their evaluations. The portable device, medically approved in Japan, successfully captured sharp-waves like activities with the same durations, amplitudes, and shapes as traditional devices. This highlights its potential to improve epilepsy diagnosis and future screening due to its portability and ease of use. Implementing portable EEG devices could promote timely and appropriate treatment, preventing misdiagnosis of neurological conditions.

20.
Front Neurosci ; 18: 1417342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156634

RESUMEN

Background: Previous structural neuroimaging studies linked cerebellar deficits to temporal lobe epilepsy (TLE). The functions of various cerebellar regions are increasingly being valued, and their changes in TLE patients warrant further in-depth investigation. In this study, we used the Spatially Unbiased Infratentorial (SUIT) toolbox with a new template to evaluate the cerebellar structural abnormalities in patients with TLE, and further explored the relationship between the changes of different cerebellar regions and cognition. Methods: Thirty-two patients with TLE were compared with 39 healthy controls (HC) matched according to age, gender, handedness, and education level. All participants underwent a high-resolution T1-weighted MRI scan on a 3.0 Tesla scanner. We used a voxel-based morphometry (VBM) approach utilizing the SUIT toolbox to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with TLE. Results: Compared with HC, TLE patients showed a significant reduction in the volume of gray matter in the Left lobule VI and white matter in the Right Crus II. In the TLE patient group, we conducted partial correlation analysis between the volumes of different cerebellar regions and cognitive rating scale scores, such as MMSE and MoCA. The volume of the Left lobule VI (GM) exhibited a positive correlation with the MMSE score, but no significant correlation was found with the MoCA score. On the other hand, there was no significant correlation observed between the volume of the Right Crus II (WM) and the two cognitive scale scores mentioned above. Furthermore, it was observed that the MMSE was more effective than the MoCA in identifying epilepsy patients with cognitive impairment. Conclusion: This study supported previous research indicating that temporal lobe epilepsy (TLE) is linked to structural changes in the cerebellum, specifically affecting the volume of both gray and white matter. These findings offer valuable insights into the neurobiology of TLE and hold potential to inform the development of enhanced diagnostic methods and more effective treatment approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA