Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 865: 161186, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581291

RESUMEN

Variations in mineralogical composition, grain size internal structure and stoichiometry of technogenic magnetic particles (TMPs) deposited in topsoil may provide crucial information necessary to trace main pollution sources and recognize various technological processes. The aim of the study was to characterize, by means of magnetic parameters and Mössbauer spectra, the TMPs from non-ferrous metallurgy, cement, coke, glass production as well as long range transport (LRT) and compare the obtained data with previous results focused on iron mining and metallurgy. This research shows that only certain pollution sources (e.g. mainly iron mining, iron metallurgy, LRT and partly glass production) can be successfully distinguished by the applied parameters. The main features characteristic for TMPs produced by Fe-mining are: high values of concentration-dependent magnetic parameters, low values of coercivity, significant contribution from coarse MD (multi-domain) grains and a relatively high stoichiometry of magnetite. The most discriminative feature for TMPs generated by the glass industry is the abundance of goethite in the topsoil samples, which is confirmed by magnetic and Mössbauer techniques. The TMPs released by the Ni-Cu smelter and the Pb-Zn waste exhibit significant differences in the Mössbauer parameters, indicating different stoichiometry of magnetite for each group. Such variations are due to replacement of Fe by other elements at tetrahedral sites in the case of TMPs released from the Ni-Cu smelter. TMPs characteristic for the LRT emissions contain higher amount of finer fraction of low-stoichiometry magnetite (mostly single-domain SD particles) than those originating from other sources. The TMPs accumulated in the topsoils around the coking plants cannot be clearly discriminated by the applied methodology due to strong influence of the local pollution sources. Magnetic studies of the TMPs generated by cement production are complicated, since their properties mainly depend on individual technology (e.g. additives) used by the local cement plants.

2.
Sci Total Environ ; 775: 145605, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33618301

RESUMEN

Technogenic magnetic particles (TMPs), produced during various industrial processes, are released into the atmosphere as dust and get deposited on the surrounding topsoil. The mineralogical and structural differences of TMPs produced in different technological processes should be reflected in their magnetic properties and therefore should be indicative for industrial pollution sources. The goal of this study was to characterize the TMPs by novel methodological approach, based on combination of magnetic methods and Mössbauer spectroscopy to indicate parameters that are discriminative enough to be used as environmental indicators for iron metallurgy, steel production, and iron mining. We collected the topsoil samples in the vicinity of 4 European iron- and steelworks, located in three different countries (Poland, Norway, and Czech Republic) and operating for minimum 40 years. We sampled also topsoil close to the opencast iron mine, iron ore dressing plant, and over strongly magnetic natural background. Analysis of the hyperfine parameters of the Mössbauer spectra revealed that TMPs are "magnetite-like" minerals with low stoichiometry. It is indicated by ratio of iron ions contributions in B sites (octahedral) and A sites (tetrahedral) in magnetite spinel structure, which is much lower than 2.0 (theoretical value for stoichiometric magnetite). The characteristic feature of TMPs collected from the vicinity of old metallurgical plants (>180 years) was the high contribution of surface components probably related to the surface oxidation/maghemitization. We found that, TMPs can be easily differentiated from geogenic magnetite based on their magnetic parameters. The TMP produced by the iron and steel metallurgy had relatively narrow ranges of magnetic parameters (saturation ratio Mrs/Ms, <0.15, coercivity ratio Bcr/Bc 2.5-6.0 and saturation to susceptibility ratio Mrs/χ 3.5-15). These magnetic parameters may be indicative for TMPs emitted by these pollution sources and helpful in the study of historical pollution sources in topsoil in urban and post-industrial areas.

3.
J Hazard Mater ; 382: 121114, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31479825

RESUMEN

Technogenic magnetic particles (TMPs) from industrial activities are major contamination sources of soils and dusts because they usually carry large amounts of heavy metals. The understanding of the association between TMPs and heavy metals in contaminated soils helps to trace the polluting sources and probing into the mechanism of magnetic phases enriched with heavy metals. In this study, we tracked the magnetic carries of heavy metals from different emission sources in steel industrial regions by using the synchrotron-based probe techniques and multiscale analytical methods. The µ-XRF mapping showed that TMPs contained various heavy metals, depending on their sources. The Fe K-edge µ-XANES revealed that the ferroalloy, pyrrhotite and TMPs in steel slag and coal ash were major magnetic phases in contaminated soils. Their relative content varied differently at the microscale. The multiscale analysis revealed that the heavy metals associated with magnetic phases exhibited pronounced scale dependence, depending on the size, type, and assemblage of different magnetic phases. Multiscale source apportionment revealed that the contamination sources varied differently at multiple scales. Heatmap analysis revealed that at 8-µm scale, Co, Cr, Cu and Mn were mainly derived from ferroalloy, while Ti, Zn and As from both ferroalloy and TMPs from coal ash.

4.
Chemosphere ; 195: 48-62, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29253789

RESUMEN

An important problem in soil magnetometry is unraveling the soil contamination signal in areas with multiple emitters. Here, geophysical and geochemical measurements were performed at four sites on a north - south transect along the Pasvik River in the Barents Region (northern Norway). These sites are influenced by depositions from the Bjørnevatn iron mine and a Ni-Cu smelter in Nikel, Russia. To relate the degree and type of pollution from these sources to the corresponding magnetic signal, the topsoil concentrations of 12 Potentially Toxic Elements (PTEs) (As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Se, Ti, Zn), were determined, magnetic hysteresis parameters and thermomagnetic properties were measured. In situ magnetic low-field susceptibility decreases from north to south with increasing distance from the iron mine. Relatively large magnetic multidomain grains of magnetite and/or titanomagnetite are responsible for the strong magnetic signal from the topsoil close to Bjørnevatn. These particles are related to increased enrichment factors of As, Mo and Cu, yielding high positive correlation coefficients with susceptibility values. At a site furthest away from the iron mine and located 7 km from the Ni-Cu smelter magnetic susceptibility values are much lower but significant positive correlations on the level of p < .1 with 8 PTEs (Ni, Cu, Co, Se, As, Zn, Cd, Cr) have been observed. The magnetic signal in this area is due to fine-grained primary sulphides and secondary fine-grained magnetite and/or maghemite.


Asunto(s)
Hierro , Magnetismo , Níquel , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad , Minería , Noruega , Ríos , Federación de Rusia , Contaminantes del Suelo/toxicidad
5.
Environ Pollut ; 219: 19-27, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27661724

RESUMEN

Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption near-edge structure (µ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. µ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge µ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale.


Asunto(s)
Hierro/química , Metales Pesados/química , Contaminantes del Suelo/química , Suelo/química , China , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Hierro/análisis , Campos Magnéticos , Metales Pesados/análisis , Contaminantes del Suelo/análisis
6.
Sci Total Environ ; 566-567: 536-551, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27236619

RESUMEN

In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas.


Asunto(s)
Monitoreo del Ambiente , Fenómenos Magnéticos , Metalurgia , Minería , Contaminantes del Suelo/análisis , Hierro , Plomo , Polonia , Plata
7.
Environ Pollut ; 212: 565-573, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26986087

RESUMEN

Magnetic particles (MP) emitted by an iron smelter were used to investigate the exposure of cows grazing on a grassland polluted by these MP and by large amounts of potentially toxic elements (PTE). The morphology as well as the chemical composition of the MP separated from cow dung were studied. Large amounts of typical MP were found (1.1 g kg(-1) dry weight) in the cow dung sampled from the exposed site, whereas these particles were absent from the reference unpolluted site. The ingested MP were mainly technogenic magnetic particles (TMP) emitted by the smelter. Considering the MP concentration in the grazed grass on the exposed site, it was concluded that cows absorb the MP not only from the grass but also from the soil surface. The results of a mild acidic leaching of the MP suggested that the particles were possibly submitted to a superficial dissolution in the abomasum, pointing at a potential route of transfer of the PTE originating from the TMP and leading into food chains. TMP were only a small part of the anthropogenic contamination having affected the soil and the dung. However, due to their unequivocal signature, TMP are a powerful tracer of the distribution of PTE in the different compartments constituting the food chains and the ecosystems. Furthermore, the measurement of the particle sizes gave evidence that a noticeable proportion of the MP could enter the respiratory tract.


Asunto(s)
Bovinos/metabolismo , Contaminantes Ambientales/metabolismo , Hierro/metabolismo , Metalurgia , Poaceae/química , Alimentación Animal/análisis , Animales , Bovinos/sangre , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/sangre , Heces , Conducta Alimentaria , Femenino , Contaminación de Alimentos , Hierro/química , Magnetismo , Metales , Suelo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
8.
Sci Total Environ ; 543(Pt A): 239-247, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26588801

RESUMEN

Magnetic measurement is an effective method to determine spatial distribution and the degree of heavy metal pollution and to identify various anthropogenic sources of heavy metals. The objectives of this investigation are to characterize the magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils and to discuss their potential environmental implications. The TMPs are separated from the urban topsoils of Luoyang city, China. The magnetic properties, morphology, and mineral phase of TMPs are studied using mineral magnetic measurement, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction, and synchrotron-radiation-based microprobe. The content of TMPs in urban topsoils ranges from 0.05 to 1.95% (on average 0.32%). The magnetic susceptibility of TMPs ranges from 4559×10(-8) to 23,661×10(-8) m(3) kg(-1) (on average 13,637×10(-8) m(3) kg(-1)). Thermomagnetic and bulk X-ray diffraction analyses indicate that main magnetic minerals of TMPs are magnetite (Fe3O4) and hematite (α-Fe2O3). The morphology of TMPs observed by SEM includes three shape types: spherule, irregular-shaped, and aggregate particles. The size of spherical TMPs ranges from 30 to about 200 µm, with the largest percentage of 30-50 µm. Synchrotron-radiation-based microprobe (µ-XRF and µ-XRD) indicates that TMPs are enriched with heavy metals Pb, Cd, Zn, Cu, and Cr, which are incorporated into lattice or adsorbed on the surface of magnetite/hematite. The content of TMPs significantly relates with the Tomlinson Pollution Load Index (PLI) (R(2)=0.467), suggesting that it can be used as proxy indicator of degree of heavy metal contamination in urban soils. The magnetic properties, microstructure and mineralogical phases of TMPs can serve as the identification of pollution sources in urban soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA