Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Sci Total Environ ; 953: 175945, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218108

RESUMEN

In the US, private well users are responsible for their own water quality testing, but local health officials are often uncertain what tests to recommend, particularly for regulated organic chemical contaminants. This study evaluated the utility of suspect and non-target screening (NTS) high resolution mass spectrometry (HRMS) as a tool to identify a wide range of organic chemicals of emerging concern in private well water and to inform well water management decisions. Qualitative NTS, which detects chemicals without providing concentrations, was used to analyze 25 private well water samples from Wake County, North Carolina. Using the NIST 20 mass spectral database (M1), NTS tentatively identified 106 unique organic chemicals across the 25 samples and an average of 11 organic chemicals per sample. At least one USEPA ToxCast chemical was identified in each private well water sample. Private well water users were interviewed prior to and after their sample's NTS results were reported back; four county groundwater managers were interviewed after aggregated results for all 25 water samples were reported back. All but one well user participant chose to participate in the reporting-back post-interview. The 24 private well users found NTS results useful and valued the contextualization of their results using NTS results for other well users and a local municipal water sample. Most private well users (67%) were surprised by their well water results, especially regarding the number of tentatively identified organic chemicals detected. All the groundwater managers believed the NTS results were useful and could help improve their testing recommendations to private well users. Even with qualitative limitations, NTS results can be an effective and valuable tool to inform the public and governance stakeholders in decisions around groundwater quality management.

2.
J Hazard Mater ; 480: 135807, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39270590

RESUMEN

Parabens are widely used as preservatives in food, pharmaceuticals, and cosmetics due to their excellent antimicrobial activities, cost-effectiveness, and stability. Previous studies have demonstrated their harmful potential and ubiquity in the environment and human tissues. This study revealed profiles of parabens and their metabolites in urine samples from a general population of different ages in China using non-target screening. Metabolism of parabens in human bodies was further explored through the identified metabolites in combination of molecular networking. A total of 34 paraben compounds were screened in the urine samples. In addition to 3 identified confidence level 1 (CL1) parent parabens, 3 CL2 compounds were also identified, namely 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and ethylparaben sulfate. Furthermore, 6 CL3 compounds were tentatively identified, five of which were sulfonated and sulfated metabolites of parabens. The remaining 22 were CL4 features without certain chemical structures. Hazardousness assessment suggested toxic potential of the identified metabolites. Distribution of the parabens and metabolites in the urines showed age-dependent differences. Sulfonation and sulfation were potentially significant metabolic pathways of the parabens in human bodies. This study provides a new insight into understanding metabolism of parabens in human bodies and potential risks of human exposure to parabens.

3.
J Hazard Mater ; 477: 135351, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088951

RESUMEN

Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.

4.
Sci Total Environ ; 949: 175251, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098406

RESUMEN

Plastics have become an essential part of modern society. Their properties can be easily manipulated by incorporating additives to impart desirable attributes, such as colour, flexibility, or stability. However, many additives are classified as hazardous substances. To better understand the risk of plastic pollution within marine ecosystems, the type and concentration of additives in plastic debris needs to be established. We report the quantification of thirty-one common plastic additives (including plasticisers, antioxidants, and UV stabilisers) in beached plastic debris collected across Aotearoa New Zealand. Additives were isolated from the plastic debris by solvent extraction and quantified using high-resolution liquid chromatography-mass spectrometry. Twenty-five of the target additives were detected across 200 items of debris, with plasticisers detected at the highest frequency (99 % detection frequency). Additives were detected in all samples, with a median of four additives per debris item. A significantly higher number of additives were detected per debris item for polyvinyl chloride (median = 7) than polyethylene or polypropylene (median = 4). The additives bis(2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, and antioxidant 702 were detected at the highest concentrations (up to 196,930 µg/g). The sum concentration of additives per debris item (up to 320,325 µg/g) was significantly higher in polyvinyl chloride plastics (median 94,716 µg/g) compared to other plastic types, primarily due to the presence of phthalate plasticisers. Non-target analysis was consistent with the targeted analysis, indicating a higher number and concentration of additives in polyvinyl chloride debris items compared to all other polymer types. Feature identification indicated the presence of more additives than previously detected in the targeted analysis, including plasticisers (phthalate and non-phthalate), processing aids, and nucleating agents. This study highlights phthalates and polyvinyl chloride as key targets for consideration in ecotoxicology and risk assessments, and the development of policies to reduce the impacts of plastic pollution.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Plásticos/análisis , Nueva Zelanda , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Plastificantes/análisis
5.
Chemosphere ; 364: 143199, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39209040

RESUMEN

Wetlands are crucial ecosystems that are increasingly threatened by anthropogenic activities. L'Albufera Natural Park, the second-largest coastal wetland in Spain, faces significant pressures from surrounding agricultural lands, industrial activities, human settlements, and associated infrastructures, including treated wastewater inputs. This study aimed at (i) establishing pathways of emerging pollutants entering the natural wetland using both target and non-target screening (NTS) for management purposes, (ii) distinguishing specific contamination hotspots through Geographic Information System (GIS) and (iii) performing basic ecological risk assessment to evaluate ecosystem health. Two sampling campaigns were conducted in the spring and summer of 2019, coinciding with the start and end of the rice cultivation season, the region's primary agricultural activity. Each campaign involved the collection of 51 samples. High-resolution mass spectrometry (HRMS) was employed, using a simultaneous NTS approach with optimized gradients for pesticides and moderately polar compounds, along with complementary NTS methods for polar compounds, to identify additional contaminants of emerging concern (CECs). Quantitative analysis revealed that fungicides comprised a substantial portion of detected CECs, constituting approximately 50% of the total quantified pesticides. Tebuconazole emerged as the predominant fungicide, with the highest mean concentration (>16.9 µg L-1), followed by azoxystrobin and tricyclazole. NTS tentatively identified 16 pesticides, 43 pharmaceuticals and personal care products (PPCPs), 24 industrial compounds, and 12 other CECs with high confidence levels. Spatial distribution analysis demonstrated significant contamination predominantly in the southwestern region of the park, gradually diminishing towards the north-eastern outlet. The composition of contaminants varied between water and sediment samples, with pharmaceuticals predominating in water and industrial compounds in sediments. Risk assessment, evaluated through risk quotient calculations based on parent compound concentrations, revealed a decreasing trend towards the outlet, suggesting wetland degradation capacity. However, significant risk levels persist throughout much of the Natural Park, highlighting the urgent need for mitigation measures to safeguard the integrity of this vital ecosystem.

6.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125006

RESUMEN

The aim of individuals consuming health supplements is to attain a robust state through nutritional regulation. However, some unscrupulous manufacturers, motivated by profit, fraudulently incorporate drugs or unauthorized components with therapeutic effects into the product for instant product performance enhancement. The long-term use of these products may inadvertently inflict harm on human health and fail to promote nutritive healthcare. The illegal inclusion of these substances is prevalent in kidney-tonifying and sexuality-enhancing products. Developing effective analytical methods to identify these products and screen for illegal added ingredients can effectively prevent such products from reaching and remaining on the market. A target screening method for the detection and quantification of 90 phosphodiesterase type 5 inhibitors (PDE-5is) in 5 kinds of health products was developed and validated. The type of dietary supplements varied from tablets, capsules, and protein powder to wine and beverages. Sample preparation was completed with a one-step liquid phase extraction. The screening process of 90 PDE-5is was done efficiently within 25 min by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) using the dynamic multiple reaction monitoring (dMRM) technique. The LODs of 90 PDE-5is were detected at levels ranging from 25 to 85 ng/g or ng/mL. This novel targeting methodology was effective and can be applied to routine market supervision. Among 286 batches of samples, 8 batches were found to be positive. Three kinds of PDE-5is were first detected in healthy products. The screening method demonstrated herein will be a promising and powerful tool for rapid screening of PDE-5is.


Asunto(s)
Suplementos Dietéticos , Cromatografía Líquida con Espectrometría de Masas , Inhibidores de Fosfodiesterasa 5 , Humanos , Cromatografía Líquida de Alta Presión/métodos , Suplementos Dietéticos/análisis , Cromatografía Líquida con Espectrometría de Masas/métodos , Inhibidores de Fosfodiesterasa 5/análisis , Inhibidores de Fosfodiesterasa 5/química , Espectrometría de Masas en Tándem/métodos
7.
J Hazard Mater ; 478: 135444, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153297

RESUMEN

Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.


Asunto(s)
Reactores Biológicos , Biotransformación , Cosméticos , Metano , Anaerobiosis , Preparaciones Farmacéuticas/metabolismo , Cosméticos/metabolismo , Metano/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental
8.
Sci Total Environ ; 950: 174606, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39034009

RESUMEN

We investigated whether cement pastes are a possible source of ecotoxicologically potent substances. For this purpose, leaching according to DIN EN 16637-2 was performed on portland cement pastes as well as blast furnace slag cement with and without an air entraining agent (AEA). The AEA, consisting of wood rosin and resin, contained the stabiliser drometrizole and the biocide octylisothiazolinone (OIT), which was confirmed by our non-target screening (NTS). Our ecotoxicological studies (Daphnia magna, Aliivibrio fischeri and Desmodesmus subspicatus) of the pure cement eluates showed no effects at all. In these samples, it was possible to attribute up to 85 % of the dissolved organic carbon (DOC) to acetate, formate and diethylene glycol (DiEG). Eluates from cement pastes with AEA contained up to 70 µg/L octylisothiazolinone (OIT), and no drometrizole was found. Around 90 % of the total OIT release happened within the first 6 h. It was possible to attribute the observed ecotoxicological effects mainly to the OIT concentrations. Additional leaching with elevated sulphate concentrations (800 mg/L) did not influence the release of DOC and OIT or increase the ecotoxicological effects. As a consequence, we advise curing the cement paste for 24 h prior to use, as this largely avoids the release of OIT and the observed ecotoxicological effects.


Asunto(s)
Materiales de Construcción , Desinfectantes , Tiazoles , Desinfectantes/análisis , Tiazoles/análisis , Ecotoxicología , Animales , Aliivibrio fischeri/efectos de los fármacos , Daphnia/efectos de los fármacos , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 947: 174486, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969135

RESUMEN

Efforts to regulate and monitor emerging contaminants are insufficient because new chemicals are continually brought to market, and many are unregulated and potentially harmful. Domestic wastewater treatment plants are not designed to remove micropollutants and are important sources of emerging contaminants in the aquatic environment. In this study, non-target screening, an unbiased method for analyzing compounds without prior information, was used to identify compounds that may be emitted in wastewater treatment plant effluent and should be monitored. Nine wastewater treatment plants using different treatment methods were studied, and a non-target screening data-processing method was used. The frequencies at which the contaminants were detected and contaminant persistence through the treatment processes were considered, and then the contaminants were prioritized. The predicted no-effect concentration of each prioritized contaminant was used to determine whether further analysis and monitoring of the contaminant was necessary. Quantitative analyses of five compounds (amantadine, atenolol, benzotriazole, diphenhydramine, and sulpiride) were performed using reference standards. Probable molecular formulae and structures were proposed for 17 contaminants, and the risks posed by the contaminants were estimated using predicted no-effect concentrations. The results provide valuable insights into how unregulated micropollutants can be identified and prioritized for monitoring in future studies.


Asunto(s)
Monitoreo del Ambiente , Espectrometría de Masas , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Aguas Residuales/análisis , Monitoreo del Ambiente/métodos , Cromatografía Liquida , Atenolol/análisis , Triazoles/análisis
10.
Environ Pollut ; 357: 124488, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960122

RESUMEN

The combination of integrative passive sampling and bioassays is a promising approach for monitoring the toxicity of polar organic contaminants in aquatic environments. However, the design of integrative passive samplers can affect the accumulation of compounds and therewith the bioassay responses. The present study aimed to determine the effects of sampler housing and sorbent type on the number of chemical features accumulated in polar passive samplers and the subsequent bioassay responses to extracts of these samplers. To this end, four integrative passive sampler configurations, resulting from the combination of polar organic chemical integrative sampler (POCIS) and Speedisk housings with hydrophilic-lipophilic balance and hydrophilic divinylbenzene sorbents, were simultaneously exposed at reference and contaminated surface water locations. The passive sampler extracts were subjected to chemical non-target screening and a battery of five bioassays. Extracts from POCIS contained a higher number of chemical features and caused higher bioassay responses in 91% of cases, while the two sorbents accumulated similar numbers of features and caused equally frequent but different bioassay responses. Hence, the passive sampler design critically affected the number of accumulated polar organic contaminants as well as their toxicity, highlighting the importance of passive sampler design for effect-based water quality assessment.


Asunto(s)
Bioensayo , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Bioensayo/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Adsorción
11.
Sci Total Environ ; 949: 175036, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069188

RESUMEN

The release of chemicals into the environment presents a significant threat to aquatic ecosystems dependent on the proximity to emission sources and seasonal dynamics of emission and mobilization. While spatial-temporal information on water pollution in Europe is increasing, there are substantial knowledge gaps on seasonal pollution dynamics in tropical countries. Thus, we took Lake Victoria South Basin in western Kenya as a case study to identify spatial and seasonal hot spots of contamination, quantified toxic risks to different groups of organisms, and identified seasonal risk drivers. For this purpose, we analyzed grab water samples from five rivers with agricultural and wastewater treatment plants in their catchment in four different seasons. We used liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) with a target list of 785 organic micropollutants. A total of 307 compounds were detected with concentrations ranging from 0.3 ng/L to 6.6 µg/L. Using a Toxic Unit (TU) approach based on mixture toxicity to standard test organisms, crustaceans were identified as the most affected group followed by algae and fish. For crustaceans, chronic risk thresholds were exceeded in 96 % of all the samples, while 56 % of all samples are expected to be acutely toxic, with the highest risk in February during the dry season. High toxic unit values for algae and fish were recorded in July dry season and May wet season. Diazinon, imidacloprid, clothianidin and pirimiphos-methyl were the major drivers for crustacean toxicity while triclosan and different herbicide mixtures drive risks to algae in dry and wet seasons, respectively. A total of 18 chemicals were found to exceed acute and chronic environmental risk thresholds. With this study, strong spatial-temporal patterns of pollution, risks and risk drivers could be confirmed informing prioritization of monitoring and abatement to enhance water quality and reduce toxic risks.


Asunto(s)
Monitoreo del Ambiente , Estaciones del Año , Análisis Espacio-Temporal , Contaminantes Químicos del Agua , Kenia , Contaminantes Químicos del Agua/análisis , Ríos/química , Animales , Medición de Riesgo
12.
J Hazard Mater ; 476: 135081, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964036

RESUMEN

Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.


Asunto(s)
Fluorocarburos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Fluorocarburos/química , Aguas Residuales/química , Eliminación de Residuos Líquidos , Medición de Riesgo , Aguas del Alcantarillado , Biodegradación Ambiental
13.
Anal Bioanal Chem ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995405

RESUMEN

Feature detection plays a crucial role in non-target screening (NTS), requiring careful selection of algorithm parameters to minimize false positive (FP) features. In this study, a stochastic approach was employed to optimize the parameter settings of feature detection algorithms used in processing high-resolution mass spectrometry data. This approach was demonstrated using four open-source algorithms (OpenMS, SAFD, XCMS, and KPIC2) within the patRoon software platform for processing extracts from drinking water samples spiked with 46 per- and polyfluoroalkyl substances (PFAS). The designed method is based on a stochastic strategy involving random sampling from variable space and the use of Pearson correlation to assess the impact of each parameter on the number of detected suspect analytes. Using our approach, the optimized parameters led to improvement in the algorithm performance by increasing suspect hits in case of SAFD and XCMS, and reducing the total number of detected features (i.e., minimizing FP) for OpenMS. These improvements were further validated on three different drinking water samples as test dataset. The optimized parameters resulted in a lower false discovery rate (FDR%) compared to the default parameters, effectively increasing the detection of true positive features. This work also highlights the necessity of algorithm parameter optimization prior to starting the NTS to reduce the complexity of such datasets.

14.
Data Brief ; 55: 110593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38974003

RESUMEN

Synthetic organic chemicals, including pesticides, pharmaceuticals, and industrial compounds, pose a growing threat to marine ecosystems. Despite their potential impact, data on the co-occurrence of these contaminants in multiple compartments, including surface water, bottom water, porewater, and sediment in the marine environment remains limited. Such information is critical for assessing coastal chemical status, establishing environmental quality benchmarks, and conducting comprehensive environmental risk assessments. In this study, we describe a multifaceted monitoring campaign targeting pesticides, pharmaceuticals, surfactants, additives, and plasticizers among other synthetic chemicals in four sampling sites. One site was located in the small Coliumo bay affected by urban settlements and tourism in central-south and additionally, we sampled three sites, Caucahue Channel, affected by urban settlements and salmon farming in northern Patagonia in Chile. Surface water, bottom water, porewater, and adjacent sediment samples were collected for target screening analysis in LC- and GC-HRMS platforms. Our results show the detection of up to 83 chemicals in surface water, 71 in bottom water, 101 in porewater, and 244 in sediments. To enhance data utility and reuse potential, we provide valuable information on the mode of action and molecular targets of the identified chemicals. This comprehensive dataset contributes to defining pollution fingerprints in coastal areas of the Global South, including remote regions in Patagonia. It serves as a critical resource for future research including marine chemical risk assessment, policymaking, and the advancement of environmental protection in these regions.

15.
Food Res Int ; 190: 114557, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945561

RESUMEN

With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Microbiología de Alimentos/métodos , Alimentos Fermentados/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Microbiota , Consorcios Microbianos
16.
Chemosphere ; 362: 142615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880262

RESUMEN

The present study examines indoor air pollution in health facilities, focusing on compounds from various sources, such as industrial products, healthcare activities and building materials. It assesses chemical and microbiological concentrations in two public hospitals, two public healthcare centres, and one public health laboratory in Spain. Measurements included indoor air quality, microbiological contaminants, ambient parameters and non-target analysis across ten different locations. Outdoor air quality was also assessed in the surroundings of the hospitals. The results showed that around 350 substances were tentatively identified at a high confidence level, with over 50 % of compounds classified as of high toxicological risk. Three indoor and 26 outdoor compounds were fully confirmed with standards. These confirmed substances were linked to medical, industrial and agricultural activities. Indoor Air Quality (IAQ) results revealed that CO, CO2, formaldehyde (HCHO), O3 and total volatile organic compounds (TVOCs) showed average values above the recommended guideline levels in at least one of the evaluated locations. Moreover, maximum concentrations detected for CO, HCHO, O3 and TVOCs in hospitals surpassed those previously reported in the literature. SARS-CoV-2 was detected in three air environments, corresponding to COVID-19 patient areas. Fungi and bacteria concentrations were acceptable in all assessed locations, identifying different fungi genera, such as Penicillium, Cladosporium, Aspergillus, Alternaria and Botrytis.


Asunto(s)
Microbiología del Aire , Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Instituciones de Salud , España , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Humanos , COVID-19 , SARS-CoV-2 , Hongos
17.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893474

RESUMEN

Herbal medicine has been widely valued because of its remarkable efficacy and minimal side effects. The quantitative analysis of herbal medicines is essential to ensure their safety and efficacy. The simultaneous detection of multiple quality markers (Q-markers) has emerged as an important approach and trend in herbal medicine quality control. In recent years, non-targeted screening has become an effective strategy for the discovery and identification of unknown compounds. This study developed a non-targeted screening and quantitative analysis strategy to discover, identify and quantify the multiple components that truly represent the efficacy of Wuling capsule. Within this strategy, 18 types of flavonoids were tentatively discovered and identified from Wuling capsule by analyzing mass cleavage pathways, the precise molecular weights of compounds, and comparing the data with a database. Ten types of flavonoids were determined after the comparison of the standards. Additionally, following the evaluation of the regression equation, linear range, limit of detection (LOD), limit of quantitation (LOQ), precision, repeatability, and recovery of the proposed quantitative method, six flavonoids were quantified. This method successfully screened, identified, and quantified the potential active components in Wuling capsule, providing insights for improving the quality control standards in other herbal medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Control de Calidad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química , Cápsulas , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Límite de Detección , Reproducibilidad de los Resultados
18.
Data Brief ; 54: 110532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868389

RESUMEN

Gas chromatography ion mobility spectrometry (GC-IMS) is a robust and sensitive benchtop technique commonly used for non-target screening of volatile organic compounds. It has been applied to authenticity analysis by generating characteristic "fingerprints" of food samples, well suited for chemometric data analysis. This dataset contains headspace GC-IMS spectra from 50 monofloral honey samples from three different botanical origins, 18 acacia honeys (Robinia pseudoacacia), 19 canola honeys (Brassica napus) and 18 honeydew honeys (forest flowers). Honeys were sourced from the beekeepers directly or obtained from governmental food inspectors from Baden-Wuerttemberg, Germany. Authenticity was confirmed by pollen analysis in the framework of the official control of foodstuffs. The data was acquired using a setup based on an Agilent 6890N gas chromatograph (Agilent Technologies, Palo Alto, CA) and an OEM Standalone IMS cell from G.A.S Sensorsysteme m. b. H. (Dortmund, Germany). All samples were recorded in duplicates and spectra are presented as raw data in the .mea file format. The dataset is available on Mendeley Data: https://data.mendeley.com/datasets/jxj2r45t2x.

19.
J Chromatogr A ; 1730: 465079, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38897111

RESUMEN

Due to the decoupling of the first (1D) and second (2D) dimension in pulsed elution-LC × LC (PE-LC × LC), method development is more flexible and straightforward compared to fast comprehensive LC × LC where the dependencies of key parameters between the two dimensions limits its flexibility. In this study we present a method for pulse generation, which is based on a switching valve alternating between one pump that delivers the gradient and a second pump that delivers low eluotrophic strength for the pause state. Consequently, the dwell volume of the system was circumvented and 7.5, and 3.75 times shorter pulse widths could be generated at flow rates of 0.2, and 0.4 mL/min with satisfactory accuracies between programmed and observed mobile phase composition (relative deviation of 6.0 %). We investigated how key parameters including pulse width and step height, 2D gradient time and flow rate affected the peak capacity in PE-LC × LC. The conditions yielding the highest peak capacity for the PE-LC × LC- high-resolution mass spectrometry (HRMS) system were applied to a wastewater effluent sample. The results were compared to a one dimensional (1D)-LC-HRMS chromatogram. The peak capacity increased with a factor 34 from 112 for the 1D-LC run to 3770 for PE-LC × LC-HRMS after correction for undersampling. The analysis time for PE-LC × LC-HRMS was 12.1 h compared to 67.5 min for the 1D-LC-HRMS run. The purity of the mass spectra improved for PE-LC × LC-HRMS by a factor 2.6 (p-value 3.3 × 10-6) and 2.0 (p-value 2.5 × 10-3) for the low and high collision energy trace compared to the 1D-LC-HRMS analysis. Furthermore, the signal-to-noise ratio (S/N) was 4.2 times higher (range: 0.06-56.7, p-value 3.8 × 10-2) compared to the 1D-LC-HRMS separation based on 42 identified compounds. The improvements in S/N were explained by the lower peak volume obtained in the PE-LC × LC-HRMS.


Asunto(s)
Espectrometría de Masas , Aguas Residuales , Aguas Residuales/química , Aguas Residuales/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
20.
Environ Pollut ; 355: 124180, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768676

RESUMEN

Solid phase extraction (SPE) has been widely used for pretreatment in target screening (TS) analysis. However, some compounds are difficult to recover by SPE or their recovery is unstable for environmental samples. In this study, we tested large-volume injection (LVI) without SPE for TS analysis of 103 compounds listed by the Ministry of the Environment (Japan)-so-called 'items to be surveyed'-using liquid chromatography high-resolution mass spectrometry. We evaluated the limit of quantification (LOQ) by LVI and compared this LOQ with the LOQ by SPE pretreatment using a hydrophilic-lipophilic balance (HLB) combined with activated carbon, which was found previously to afford the best SPE cartridges for target compounds recovery. The LOQ generally decreased as the injection volume increased, and the LOQ was at least 250 times lower for a 500-µL injection than for a 2-µL injection for half of the compounds. LVI provided LOQs lower than the predicted no effect concentration for more compounds than the SPE method. The average matrix effect (ME) by LVI was in the range 70%-130% for 69 out of 97 compounds. The ME was higher or lower for some of the remaining compounds, but the ME was in the range 10%-1000% for all 18 water samples for 84 of the 97 compounds. Comparing the ME by LVI and the recovery ratio by the SPE method showed that LVI achieved more accurate quantitation than the SPE method for a larger number of compounds. Therefore, LVI provides better sensitivity and quantitativeness than the SPE method using HLB and activated carbon for TS analysis of as many 'items to be surveyed' as possible.


Asunto(s)
Monitoreo del Ambiente , Espectrometría de Masas , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Extracción en Fase Sólida/métodos , Monitoreo del Ambiente/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA