Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Chemosphere ; : 143275, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277038

RESUMEN

Various industries produce a myriad of synthetic molecules used to satisfy our needs, but all these molecules are likely to reach aquatic environments. The number of organic contaminants found in rivers and lakes continues to rise, and part of this contamination gets transferred into sediments. Analytical methods to detect problematic substances in the environment often use mass spectrometry coupled with chromatography. Here we reviewed a set of 163 articles and compiled the relevant information into a comprehensive database for analysing organic contaminants in continental sediments including suspended particulate matter and surface and bottom sediments in lakes, rivers and estuaries. We found 1,204 compounds detected at least once in sediments, and classified them into 11 categories, i.e. hydrocarbons, flame retardants, polychlorinated biphenyls (PCB), plasticizers, per- and poly-fluoroalkyl substances (PFAS), organochlorines (OCP) and other pesticides, pharmaceuticals, hormones, personal care products (PCP), and other contaminants. Concentrations of these compounds varied from a few ng to several mg/kg of dry sediment. Even hydrophilic compounds were detected in high concentrations. Well-known hydrophobic and persistent contaminants tend to be analysed with mass spectrometry coupled to gas chromatography (GC-MS) whereas contaminants of emerging concern (CEC) are usually analysed with liquid chromatography- mass spectrometry (LC-MS). Suspect screening and non-target analyses (NTA), which use high-resolution mass spectrometry, are still scarcely used on sediment but hold promise for gaining deeper knowledge of organic contamination in aquatic environments.

2.
Chemosphere ; : 143324, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278327

RESUMEN

This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.

3.
Mar Pollut Bull ; 208: 116790, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270562

RESUMEN

Increasing use of scrubbers on vessels for reduction of SOx emissions has led to environmental concerns due to discharge of partly persistent and toxic substances such as polycyclic aromatic compounds (PAC) into the sea. A comprehensive analysis of the dissolved and particulate phases of the discharge water from open and closed loop operations on four ships was performed. 71 PAC in the discharge waters varied in concentration and were associated with those of the fuels used, as they mainly originate in unburnt fuel. Closed loop discharge water showed higher PAC concentrations, especially of HMW PAC, which partly explains the larger toxic effects reported for this discharge. Alkylnaphthalenes and -phenanthrenes dominated in dissolved and particulate fractions, respectively. 14 NSO-PAC concentrations were relatively low. Alkylated derivatives of 4H-cyclopenta[4,5-def]phenanthrene and/or phenylnaphthalene were for the first time tentatively identified using GC-APLI-MS. The use of low-PAC fuels could significantly reduce PAC ship emissions.

4.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39124989

RESUMEN

Cotton is used for the production of textiles, hygiene and cosmetic materials. During cultivation and technological processes, various types of substances (surfactants, softeners, lubricants, etc.) penetrate cotton, which can have a harmful effect on both the human body and the environment. The aim of this study was to analyze selected cotton products in order to identify the substances contained and to describe the potential possibilities of inducing textile contact dermatitis (CD). The impact of the identified compounds on the aquatic environment was also taken into account. Nine samples of cotton clothing and seven samples of cotton pads from various manufacturers were tested. Samples after extraction using the FUSLE (Focused Ultrasonic Liquid Extraction) technique were analyzed with GC/MS. Qualitative analysis was based on comparing mass spectra with library spectra using the following mass spectra deconvolution programs: MassHunter (Agilent), AMDIS (NIST), and PARADISE (University of Copenhagen). The parameter confirming the identification of the substance was the retention index. Through the non-target screening process, a total of 36 substances were identified, with an average AMDIS match factor of approximately 900 ("excellent match"). Analyzing the properties of the identified compounds, it can be concluded that most of them have potential properties that can cause CD, also due to the relatively high content in samples. This applies primarily to long-chain alkanes (C25-C31), saturated fatty acids, fatty alcohols (e.g., oleyl alcohol), and fatty acid amides (e.g., oleamide). However, there are not many reports describing cases of cotton CD. Information on the identified groups of compounds may be helpful in the case of unexplained sources of sensitization when the skin comes into contact with cotton materials. Some of the identified compounds are also classified as dangerous for aquatic organisms, especially if they can be released during laundering.


Asunto(s)
Fibra de Algodón , Cromatografía de Gases y Espectrometría de Masas , Cromatografía de Gases y Espectrometría de Masas/métodos , Fibra de Algodón/análisis , Humanos , Textiles/análisis , Dermatitis por Contacto/etiología
5.
J Hazard Mater ; 476: 135081, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964036

RESUMEN

Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.


Asunto(s)
Fluorocarburos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Fluorocarburos/química , Aguas Residuales/química , Eliminación de Residuos Líquidos , Medición de Riesgo , Aguas del Alcantarillado , Biodegradación Ambiental
6.
Sci Total Environ ; 948: 174715, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39002592

RESUMEN

Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.


Asunto(s)
Monitoreo del Ambiente , Aprendizaje Automático , Ríos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Preparaciones Farmacéuticas/análisis , Ríos/química , Eliminación de Residuos Líquidos/métodos
7.
Sci Total Environ ; 946: 174062, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917906

RESUMEN

The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.


Asunto(s)
Monitoreo del Ambiente , Ríos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Aguas Residuales/química , España , Estaciones del Año
8.
ACS Synth Biol ; 13(6): 1737-1749, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38845097

RESUMEN

Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.


Asunto(s)
Sistemas CRISPR-Cas , Internet , Programas Informáticos , Sistemas CRISPR-Cas/genética , Genoma Microbiano/genética , Edición Génica/métodos
9.
Environ Res ; 257: 119242, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821457

RESUMEN

In an attempt to discover and characterize the plethora of xenobiotic substances, this study investigates chemical compounds released into the environment with wastewater effluents. A novel non-targeted screening methodology based on ultra-high resolution Orbitrap mass spectrometry and nanoflow ultra-high performance liquid chromatography together with a newly optimized data-processing pipeline were applied to effluent samples from two state-of-the-art and one small wastewater treatment facility. In total, 785 molecular structures were obtained, of which 38 were identified as single compounds, while 480 structures were identified at a putative level. Most of these substances were therapeutics and drugs, present as parent compounds and metabolites. Using R packages Phyloseq and MetacodeR, originally developed for bioinformatics, significant differences in xenobiotic presence in the wastewater effluents between the three sites were demonstrated.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Aguas Residuales/química , Aguas Residuales/análisis , Dinamarca , Cromatografía Líquida de Alta Presión , Eliminación de Residuos Líquidos , Espectrometría de Masas/métodos , Xenobióticos/análisis
10.
Plant Biotechnol J ; 22(9): 2488-2503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38713743

RESUMEN

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Oryza , Edición Génica/métodos , Genoma de Planta/genética , Oryza/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética
11.
Water Res ; 257: 121709, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728781

RESUMEN

The comprehensive understanding of the occurrence of benzotriazole UV stabilizers (BZT-UVs) in environmental surface water is imperative due to their widespread application and potential aquatic toxicity. We conducted an analysis of 13 traditional BZT-UVs in surface water samples collected from Taihu Lake (TL, n = 23) and Qiantang River (QR, n = 22) in China. The results revealed that 5­chloro-2-(3,5-di-tertbutyl-2-hydroxyphenyl)-benzotriazole (UV-327) was consistently the predominant BZT-UV in water samples from TL (mean 16 ng/L; detection frequency 96 %) and QR (14 ng/L; 91 %). Furthermore, we developed a characteristic fragment ion-based strategy to screen and identify unknown BZT-UVs in collected surface water, utilizing a high-resolution mass spectrometer. A total of seven novel BZT-UVs were discovered in water samples, and their chemical structures were proposed. Four of these novel BZT-UVs were further confirmed with standards provided by industrial manufacturers. Semi-quantitative analysis revealed that among discovered novel BZT-UVs, 2-(2­hydroxy-3­tert­butyl­5-methylphenyl)-benzotriazole was consistently the predominant novel BZT-UV in TL (mean 4.1 ng/L, detection frequency 70 %) and QR (2.8 ng/L, 77 %) water. In TL water, the second predominant novel BZT-UV was 2-(3-allyl-2­hydroxy-5-methylphenyl)-2H-benzotriazole (mean 3.9 ng/L,

Asunto(s)
Triazoles , Contaminantes Químicos del Agua , Triazoles/química , Contaminantes Químicos del Agua/química , China , Lagos/química , Rayos Ultravioleta , Ríos/química , Monitoreo del Ambiente
12.
Artículo en Inglés | MEDLINE | ID: mdl-38728548

RESUMEN

Food contact materials (FCMs) from three countries were analysed for all extractable organofluorines (EOFs) from the materials and subsequently by target and non-target analysis for per- and polyfluoroalkyl substances (PFAS). The EOF varied by two orders of magnitude for FCM from UK and Saudi Arabia ranging between 2.14 and 483 ng cm-2 (0.2-48 ng g-1) showing that one quarter of all samples were above the Danish regulation for PFAS in FCM. Target PFAS showed high variability in composition and accounted for less than 1% of the EOF. Non-target PFAS screening using HPLC-ICP-MS and coupled simultaneously to HRMS showed the occurrence of organofluorines which were identified by neither LC-MS/MS nor LC-HRMS. This illustrates that the current target PFAS approaches fail to identify EOFs from FCM, which would be a problem with the new EU proposal to ban all PFAS.


Asunto(s)
Fluorocarburos , Contaminación de Alimentos , Embalaje de Alimentos , Espectrometría de Masas en Tándem , Fluorocarburos/análisis , Contaminación de Alimentos/análisis , Arabia Saudita , Cromatografía Liquida , Espectrometría de Masas , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Cromatografía Líquida con Espectrometría de Masas
13.
Chemosphere ; 359: 142298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729438

RESUMEN

Japanese radish (Raphanus sativus var. longipinnatus) plants grown under laboratory conditions were individually exposed to the same doses of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, ATR) or its main degradation products: either 2-amino-4-chloro-6-isopropylamino-1,3,5-triazine (DEA) or 2-amino-4-chloro-6-ethylamino-1,3,5-triazine (DIA) or desethyl-desisopropyl-atrazine (DEDIA) or 4-(ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine (HA), respectively. One week after treatment in plants exposed to ATR, DIA, and DEA, their concentrations were 7.8 µg/g, 9.7 µg/g, and 14.5 µg/g, respectively, while those treated with DEDIA and HA did not contain these compounds. These results were correlated with plant amino acid profile obtained by suspect screening analysis and metabolomic "fingerprint" based on non-target analysis, obtained by liquid chromatography coupled with QTRAP triple quadrupole mass spectrometer. In all cases, both ATR and its by-products were found to interfere with the plant's amino acid profile and modify its metabolic "fingerprint". Therefore, we proved that the non-target metabolomics approach is an effective tool for investigating the hidden effects of pesticides and their transformation products, which is particularly important as these compounds may reduce the quality of edible plants.


Asunto(s)
Atrazina , Herbicidas , Metabolómica , Raphanus , Atrazina/toxicidad , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Herbicidas/toxicidad , Triazinas/toxicidad
14.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612934

RESUMEN

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Proteína del Fotosistema I , Clorofila A , Transferencia de Energía , Cinética
15.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652942

RESUMEN

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Asunto(s)
Disruptores Endocrinos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Estilo de Vida , Ácidos Ftálicos , Humanos , Disruptores Endocrinos/orina , Niño , Preescolar , Masculino , Femenino , Exposición a Riesgos Ambientales/análisis , China , Ácidos Ftálicos/orina , Contaminantes Ambientales/orina , Fenoles/orina , Adulto , Hong Kong , Padres , Compuestos de Bencidrilo/orina , Pueblos del Este de Asia
16.
Toxics ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38668470

RESUMEN

The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.

17.
Environ Int ; 185: 108540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428191

RESUMEN

The contamination characteristics, migration patterns and health risks of per- and polyfluoroalkyl substances (PFAS) were investigated in 66 Chinese paper products by using target and non-target screening methods. Among 57 target PFASs, 5 and 6 PFASs were found in the hygiene paper products (

Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Fluorocarburos/análisis , Etanol , Alimentos , Inocuidad de los Alimentos , China , Ácidos Alcanesulfónicos/análisis
18.
Sci Total Environ ; 927: 171876, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531445

RESUMEN

Textile industry uses varieties of chemicals including per- and polyfluoroalkyl substances (PFAS). PFAS are known to be persistent and incompletely removed in wastewater treatment plants (WWTPs). So far, little is known about what types of PFAS are used in the textile industry and their potential risks. Here we investigated PFAS in two WWTPs and a receiving river of a textile industrial park in Guangxi, China, by using both target and non-target analyses over a two-year period. The target analysis identified 11 specific PFAS, while the non-target analysis revealed a list of 648 different PFAS, including both legacy and emerging substances. Notably, perfluorooctanoic acid (PFOA) was still the most prevalent compound detected. Of particular concern was the finding that the investigated WWTPs, which employs an A/O (Anaerobic/Aerobic) process, exhibited a poor removal efficiency for PFAS. The average removal rate was only 22.0 %, indicating that the current treatment processes are inadequate in effectively mitigating PFAS contamination. Correlation analysis further highlighted the potential for PFAS to be transported from WWTPs to the receiving river, revealing a significant and strong positive correlation between the PFAS in the WWTP effluent and those of the river. Perfluorooctanesulfonic acid (PFOS) and two emerging PFAS (DTXSID30240816 and DTXSID90240817) were identified to have high ecological risks in the receiving river. Notably, these two emerging PFAS are homologues, and their presence in WWTPs has been poorly reported. The findings highlight the wide use and persistence of PFAS in current textile WWTPs, indicating potential long term risks to the receiving environment.

19.
Water Res ; 252: 121245, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335750

RESUMEN

Citalopram (CIT) is one of the most consumed antidepressants and frequently detected in aquatic environments worldwide. Conventional wastewater treatment cannot remove this neuronal active pharmaceutical efficiently. Past studies showed that moving bed biofilm reactors (MBBRs) can degrade CIT but the exact transformation pathways and toxicity reduction remained unclear. In this study, the effects of substrate stimulation on CIT transformation in an MBBR were systematically investigated. The results showed that a co-metabolic stimulation by acetate increased the transformation rate by 54 % and 24 % at high (300 µg/L) and environmental concentration (1.8 µg/L) of CIT, respectively. Conversely, the complex substrates in raw wastewater reduced the reaction rates by 44 %, suggesting a competitive inhibition on the enzymatic sites. The substrate stimulation changed the enantiomeric fraction (EF) of CIT from racemic (EF=0.5) to 0.60 at the high CIT concentrations, while those at lower concentrations resulted in an EF of 0.33, indicating that probably different enantioselective enzymes degraded CIT at high concentrations than at low concentrations, i.e., the presence of 300 µg/L CIT was possibly sufficient to induce the synthesis of different enantioselective enzymes, than those originally present. Through non-target and target analysis, in total 19 transformation products (TPs) including 7 TPs that were hitherto not mentioned in the literature were identified. Among these were quaternary amines, alkenes and conjugate TPs. The major transformation pathways were a) nitrile hydrolysis (up to 43 %), b) amide hydrolysis, and c) N-oxidation. Dosing acetate up-regulated significantly the amide hydrolysis, N-oxidation and conjugation pathways but inhibited the N-demethylation and α-carbon hydroxylation pathways. The in-silico toxicity assessment of CIT and its TPs suggested the overall eco-toxic potential of TPs was reduced by MBBR. Furthermore, the degradation under carbon-limited (famine) conditions favored the formation of the more toxic carboxamide, N-desmethyl and alkene TPs, while carbon-rich conditions, promoted the production of the less toxic carboxylic acid, N-oxide and ester TPs. Therefore, this study demonstrated that a) the co-metabolic stimulation of CIT metabolization by dosing a simple carbon source or b) inhibition of CIT metabolization by complex substrates; c) substrate stimulation made a difference on CIT transformation rates, enantiomeric profiles, pathways and toxic potentials. Overall, a simple-carbon co-metabolic stimulated MBBR was an efficient up-regulation strategy to minimize hazardous CIT and CIT-TPs as much as possible.


Asunto(s)
Citalopram , Contaminantes Químicos del Agua , Citalopram/análisis , Biopelículas , Estereoisomerismo , Contaminantes Químicos del Agua/análisis , Reactores Biológicos , Aguas Residuales , Antidepresivos , Acetatos , Amidas , Carbono
20.
Chemosphere ; 352: 141402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346509

RESUMEN

Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Lluvia , Monitoreo del Ambiente/métodos , Movimientos del Agua , Contaminantes Ambientales/análisis , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA