Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38894098

RESUMEN

Bolts have the advantages of simple installation and easy removal. They are widely applied in aerospace and high-speed railway traffic. However, the loosening of bolts under mixed loads can lead to nonlinear decreases in pre-loading. This affects the safety performance of the structure and may lead to catastrophic consequences. Existing techniques cannot be used to monitor the bolt performance status in time. This has caused significant problems with the safety and reliability of equipment. In order to study the relaxation law of bolt pre-loading, this paper carries out an experimental analysis for 8.8-grade hexagonal bolts and calibrates the torque coefficient. We also studied different loading waveforms, nickel steel plate surface roughnesses, tangential displacement frequencies, four different strengths and bolt head contact areas of the bolt, the initial pre-loading, and the effects of tangential cyclic displacement on pre-loading relaxation. This was done in order to accurately predict the degree of bolt pre-loading loosening under external loads. The laws are described using the allometric model function and the nine-stage polynomial function. The least squares method is used to identify the parameters in the function. The results show that bolts with a smooth surface of the connected structure nickel steel flat plate, high-frequency working conditions, half-sine wave, and a high-strength have better anti-loosening properties. Taking 5-10 cycles of cyclic loading as a boundary, the pre-loading relaxation is divided into two stages. The first stage is a stage of rapid decrease in bolt pre-loading, and the second stage is the slow decrease process. The performance prediction study shows that the allometric model function is the worst fitted, at 71.7% for the small displacement condition. Other than that, the allometric model function and the nine-stage polynomial function can predict more than 85.5% and 90.4%, which require the use of least squares to identify two and ten unknown parameters, respectively. The complexity of the two is different, but both can by better indicators than the pre-loading relaxation law under specific conditions. It helps to improve the monitoring of bolt loosening and the system use cycle, and it can provide theoretical support for complex equipment working for a long time.

2.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501451

RESUMEN

We developed a tactile sensor for robot hands that can measure normal force (FZ) and tangential forces (FX and FY) using photoelasticity. This tactile sensor has three photodiodes and three light-emitting diode (LED) white light sources. The sensor is composed of multiple elastic materials, including a highly photoelastic polyurethane sheet, and the sensor can detect both normal and tangential forces through the deformation, ben sding, twisting, and extension of the elastic materials. The force detection utilizes the light scattering resulting from birefringence.

3.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499057

RESUMEN

The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Complejo Mayor de Histocompatibilidad , Antígenos de Histocompatibilidad/metabolismo , Péptidos/metabolismo , Receptores Quiméricos de Antígenos/genética
4.
Materials (Basel) ; 15(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363013

RESUMEN

Cutting using an abrasive water jet is a complex process involving several physical phenomena. This research studies some of them, mostly the influence of selected variables on the measured forces and vibrations. The traverse speed represents one of the key parameters when cutting using the AWJ. In the presented research, a set of experiments was performed on twelve different metal samples, while the force sensor measured the exerted forces and accelerometers measured the vibrations. Ten different types of steel samples of the same dimensions were cut applying five different traverse speeds. The data obtained during these measurements show that an increase in the traverse speed leads to an increase in the measured forces and vibrations. An analogous experiment performed on bronze and duralumin samples of the same dimensions, having applied higher speeds to compensate for the difference in the material structure and properties, completes the presented data. The most important results of the research are that exerted forces in the z-axis are higher than those in the x-axis, whereas measured vibrations are higher in the x-axis. According to our research, the elemental structure, especially the carbide formation, affects the measured forces and vibrations substantially.

5.
Materials (Basel) ; 14(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203827

RESUMEN

The necessity of monitoring the abrasive waterjet (AWJ) processes increases with the spreading of this tool into the machining processes. The forces produced on the workpiece during the abrasive waterjet machining can yield some valuable information. Therefore, a special waterjet-force measuring device designed and produced in the past has been used for the presented research. It was tested during the AWJ cutting processes, because they are the most common and the best described up-to-date AWJ applications. Deep studies of both the cutting process and the respective force signals led to the decision that the most appropriate indication factor is the tangential-to-normal force ratio (TNR). Three theorems concerning the TNR were formulated and investigated. The first theorem states that the TNR strongly depends on the actual-to-limit traverse speed ratio. The second theorem claims that the TNR relates to the cutting-to-deformation wear ratio inside the kerf. The third theorem states that the TNR value changes when the cutting head and the respective jet axis are tilted so that a part of the jet velocity vector projects into the traverse speed direction. It is assumed that the cutting-to-deformation wear ratio increases in a certain range of tilting angles of the cutting head. This theorem is supported by measured data and can be utilized in practice for the development of a new method for the monitoring of the abrasive waterjet cutting operations. Comparing the tilted and the non-tilted jet, we detected the increase of the TNR average value from 1.28 ± 0.16 (determined for the declination angle 20° and the respective tilting angle 10°) up to 2.02 ± 0.25 (for the declination angle 30° and the respective tilting angle of 15°). This finding supports the previously predicted and published assumptions that the tilting of the cutting head enables an increase of the cutting wear mode inside the forming kerf, making the process more efficient.

6.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283156

RESUMEN

Knowledge of the forces applied to the pedals during cycling is of great importance both from the point of view of improving sporting performance and medical analysis of injuries. The most common equipment for measuring pedal forces is usually limited to the study of forces in the sagittal plane. Equipment that measures three-dimensional forces tends to be bulky and to be incorporated into bicycles that are modified to accommodate it, which can cause the measurements taken to differ from those obtained in real pedalling conditions. This work presents a device for measuring the 3D forces applied to the pedal, attachable to a conventional bicycle and pedals, which does not alter the natural pedalling of cyclists. The equipment consists of four gauges located on the pedal axis and two on the crank, controlled by a microcontroller. Pedal forces measurements were made for six cyclists, with results similar to those shown in the literature. The correct estimation of the lateral-medial direction force is of great interest when evaluating a possible overload at the joints; it will also allow a comparison of the effectiveness index during pedalling, showing the role of this component in this index from a mechanical standpoint.


Asunto(s)
Ciclismo , Deportes , Fenómenos Biomecánicos , Pie
7.
Int J Retina Vitreous ; 7(1): 40, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001276

RESUMEN

BACKGROUND: Idiopathic epiretinal membrane (iERM) is a common retinal disease in the elderly population. The exact pathogenesis of iERM is unknown. The present study aimed to evaluate the relationship between aqueous flare and morphology of iERM using swept-source optical coherence tomography (OCT). METHODS: A consecutive series of 36 eyes of 33 patients with iERM and 109 control eyes of 109 patients were retrospectively examined. Aqueous flare measurements and OCT images were obtained on the same day. The average total retinal, inner retinal, outer retinal, and choroidal thicknesses were calculated using the thickness map mode with an Early Treatment Diabetic Retinopathy Study nine-zone grid that was divided into three zones. The maximum depth of the retinal folds in iERMs was manually measured. The correlation among flare value, maximum depth of folds, and retinal and choroidal thicknesses was evaluated. The morphological changes between the control eyes and the eyes with iERM in different stages were examined. RESULTS: The result demonstrated a significant positive correlation between the aqueous flare value and total and inner retinal thicknesses in the early stage of iERM. There was a significant positive correlation between the maximum depth of folds and total and inner retinal thicknesses in the early stage of iERM, and the maximum depth of folds significantly increased in the advanced stage. The total and inner retinal thicknesses and proportion of inner retinal thickness significantly increased as the stage of iERM progressed. CONCLUSIONS: The aqueous flare value was associated with retinal thickness in the early stage of iERM, which supports the idea that inflammation or breakdown of blood-ocular barrier is involved in the process of iERM formation. The maximum retinal folds increased as the stage of iERM progressed and retinal thickness increased, which indicates that the tangential force increases as the iERM stage progresses.

8.
J Neurophysiol ; 115(1): 100-11, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26467520

RESUMEN

To examine the activity of somatosensory cortex (S1) neurons to self-generated shear forces on the index and thumb, two monkeys were trained to grasp a stationary metal tab with a key grip and exert forces without the fingers slipping in one of four orthogonal directions for 1 s. A majority (∼85%) of slowly adapting and rapidly adapting (RA) S1 neurons had activity modulated with shear force direction. The cells were recorded mainly in areas 1 and 2 of the S1, although some area 3b neurons also responded to shear direction or magnitude. The preferred shear vectors were distributed in every direction, with tuning arcs varying from 50° to 170°. Some RA neurons sensitive to dynamic shear force direction also responded to static shear force but within a narrower range, suggesting that the direction of the shear force may influence the adaptation rate. Other neurons were modulated with shear forces in diametrically opposite directions. The directional sensitivity of S1 cortical neurons is consistent with recordings from cutaneous afferents showing that shear direction, even without slip, is a powerful stimulus to S1 neurons.


Asunto(s)
Dedos/fisiología , Fuerza de la Mano , Corteza Somatosensorial/fisiología , Percepción del Tacto , Animales , Fenómenos Biomecánicos , Dedos/inervación , Macaca fascicularis , Neuronas/fisiología , Desempeño Psicomotor , Umbral Sensorial , Corteza Somatosensorial/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA