Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vitam Horm ; 123: 619-644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37718000

RESUMEN

During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.


Asunto(s)
Hormonas Juveniles , Metopreno , Humanos , Metopreno/farmacología , Hormonas Juveniles/farmacología , Diferenciación Celular , Epigénesis Genética , Reproducción
2.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430311

RESUMEN

In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.


Asunto(s)
Rhodnius , Animales , Femenino , Rhodnius/genética , Hormonas Juveniles/metabolismo , Transducción de Señal , Interferencia de ARN , Ovario/metabolismo
3.
Biosci Biotechnol Biochem ; 86(11): 1490-1496, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35977393

RESUMEN

Ecdysone agonists are a class of insecticides that activate the ecdysone receptor (EcR) heterodimerized with the ultraspiracle (USP). Here, we report a new luciferase reporter assay for ecdysone agonists. The assay employs mammalian HEK293T cells transiently transfected with the EcR and USP genes of Chilo suppressalis, along with the taiman (Tai) gene of Drosophila melanogaster that encodes a steroid receptor coactivator. This assay system gave results consistent with those of radioligand binding assays and showed sensitivity superior to that of the existing in vitro methods. In addition, use of the heterologous host cells precludes perturbation from intrinsic players of the ecdysone signaling, which is a potential drawback of insect cell-based methods. This reporter system is suitable for detailed structure-activity analysis of ecdysone agonists and will serve as a valuable tool for the rational design of novel insect growth regulators.


Asunto(s)
Proteínas de Drosophila , Insecticidas , Receptores de Esteroides , Animales , Humanos , Ecdisona/farmacología , Ecdisona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Luciferasas/genética , Hormonas Juveniles , Mamíferos/metabolismo
4.
Insect Biochem Mol Biol ; 142: 103721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007710

RESUMEN

Diapause is one of the major strategies for insects to prepare for and survive harsh seasons. In females, the absence of juvenile hormone (JH) is a hallmark of adult reproductive diapause, a developmental arrest, which is much less characterized in males. Here we show that juvenile hormone III skipped bisepoxide (JHSB3) titers in hemolymph remarkably differ between reproductive males and females of the linden bug Pyrrhocoris apterus, whereas no JH was detected in diapausing adults of both sexes. Like in females, ectopic application of JH mimic effectively terminated male diapause through the canonical JH receptor components, Methoprene-tolerant and Taiman. In contrast to females, long photoperiod induced reproduction even in males with silenced JH reception or in males with removed corpus allatum (CA), the JH-producing gland. JHSB3 was detected in the accessory glands (MAG) of reproductive males, unexpectedly, even in males without CA. If there is a source of JHSB3 outside CA or a long-term storage of JHSB3 in MAGs remains to be elucidated. These sex-related idiosyncrasies are further manifested in different dynamics of diapause termination in P. apterus by low temperature. We would like to propose that this sexual dimorphism of diapause regulation might be explained by the different reproductive costs for each sex.


Asunto(s)
Diapausa de Insecto , Diapausa , Heterópteros , Animales , Corpora Allata , Femenino , Heterópteros/fisiología , Hormonas Juveniles , Masculino , Metopreno , Reproducción , Caracteres Sexuales
5.
Fish Shellfish Immunol ; 105: 152-163, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32652297

RESUMEN

In insects, Taiman (Tai) participates in the juvenile hormone, 20-hydroxyecdysone, insulin, and Hippo signaling pathways. However, the role of Tai in crustacean innate immunity is less known. In this study, four Tai isoforms (MnTai-A, MnTai-B, MnTai-C, and MnTai-D) produced by alternative splicing were identified from Macrobrachium nipponense. The obtained genome sequences indicated that MnTai DNA has more than 20 exons and 19 introns. The second to last (-exon2) and the third to last (-exon3) exons can be alternatively spliced. The loss of -exon2 or -exon3 produces MnTai-B or MnTai-C, respectively. Both exons are absent in MnTai-D. The full-length cDNA of MnTai-A (including all exons) was 6894 bp with an open reading frame of 4998 bp that encoded a protein of 1665 amino acids. MnTaiA contains the conservative structure of the Tai family and clustered with nuclear receptor coactivator from shrimp. All these four isoforms were widely distributed in a variety of tissues with the highest expression level in the hepatopancreas except MnTaiC. The transcriptional levels of total Tai genes (designated as MnTaiT) in the hepatopancreas and gills were regulated by bacterial or viral challenge. Knockdown of MnTaiT increased the expression of anti-microbial peptides (AMPs) during Vibrio parahaemolyticus infection. Further study indicated that the negative regulation of AMP gene expression by prawn Tai was mediated through its positive regulation of cactus. Our research provides valuable information that prawn Tai isoforms are involved in innate immunity.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Palaemonidae/genética , Palaemonidae/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia , Factores de Transcripción/química
6.
Pest Manag Sci ; 76(7): 2316-2323, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32003111

RESUMEN

BACKGROUND: Juvenile hormones (JHs) are a class of sesquiterpenoids that play a pivotal role in insect growth and reproduction. Synthetic JH agonists (JHAs), including pyriproxyfen, have been widely used as insecticides to control agricultural pests and disease vectors. The antimetamorphic action of JHAs is mediated by their intracellular receptor, the heterodimer of Methoprene-tolerant (Met) and Taiman (Tai) proteins. Although a range of bioassay systems has been developed to detect the activity of JHAs, each of these systems has its own drawback(s), such as poor reproducibility, the use of radioactive ligands or the effect of endogenous JH-signaling factors. RESULTS: To address these issues, we constructed a new luciferase reporter assay for JHAs in mammalian HEK293T cells transiently transfected with the Drosophila Met and Tai genes. This reporter system gave highly reproducible results and showed nanomolar sensitivity to natural JHs. We then applied this reporter system to a structure-activity relationship (SAR) analysis of 14 natural and synthetic JHAs, leading to identification of the ligand structural factors important for the transcription-inducing activity. CONCLUSION: Because this reporter system is not affected by the signaling cascade downstream of the JH receptors, it is suitable for evaluating the intrinsic activity of JHAs. The SAR results obtained in this study therefore provide invaluable information on the rational design of novel JHA insecticides.


Asunto(s)
Metopreno/metabolismo , Animales , Proteínas de Drosophila , Drosophila melanogaster , Células HEK293 , Humanos , Reproducibilidad de los Resultados
7.
Pestic Biochem Physiol ; 160: 30-39, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31519255

RESUMEN

An exploration of novel control strategies for Leptinotarsa decemlineata is becoming more pressing given rapid evolution of insecticide resistance and rise of production loss of potato. Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) is a promising alternative for management. An important first step is to uncover possible RNA-interference (RNAi)-target genes effective against both young and old larvae. Taiman (Tai) is a basic-helix-loop-helix/Per-Arnt-Sim transcription factor that is involved in the mediation of both juvenile hormone (JH) and 20-hydroxyecdysone (20E) signaling. In the present paper, we found that continuous ingestion of dsTai for three days by third (penultimate)-instar larvae caused approximately 20% larval mortality and 80% pupation failure. The larval lethality resulted from failed cuticle and tracheae shedding, which subsequently reduced foliage consumption and nutrient absorption, and depleted lipid stores. In contrast, pupation failure derived from disturbed JH and 20E signals, and disordered nutrient homeostasis including, among others, inhibition of trehalose metabolism and reduction of chitin content. Knockdown of LdTai caused similar larval lethality and pupation impairment in second and fourth (final) larval instars. Therefore, LdTai is among the most attractive candidate genes for RNAi to control L. decemlineata larvae.


Asunto(s)
Escarabajos/crecimiento & desarrollo , Silenciador del Gen , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Animales , Ecdisterona/metabolismo , Técnicas de Silenciamiento del Gen , Hormonas Juveniles/metabolismo , Interferencia de ARN
8.
Curr Biol ; 29(17): 2790-2800.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31402304

RESUMEN

The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined. Here, we show that Tai expression transforms sessile pupal wing cells into an invasive mass that penetrates the adjacent thorax during a period of high 20E. Candidate analysis confirms a reliance on elements of the 20E and Hippo pathways, such as Yki and the Yki-Tai target dilp8. Screening the Tai-induced wing transcriptome detects enrichment for innate immune factors, including the Spätzle (Spz) family of secreted Toll ligands that induce apoptosis during cell competition. Tai-expressing wing cells induce immune signaling and apoptosis among adjacent thoracic cells, and genetic reduction of spz, Toll, or the rpr/hid/grim pro-apoptotic factors each suppresses invasion, suggesting an intercellular Spz-Toll circuit supports killing-mediated invasion. Modeling these interactions in larval epithelia confirms that Tai kills neighboring cells via a mechanism involving Toll, Spz factors, and the Spz inhibitor Necrotic. Tai-expressing cells evade death signals by repressing the immune deficiency (IMD) pathway, which operates in parallel to Toll to control nuclear factor κB (NF-κB) activity and independently regulates JNK activity. In sum, these findings suggest that Tai promotes competitive cell killing via Spz-Toll and that this killing mechanism supports pathologic intertissue invasion in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/fisiología , Ecdisterona/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , Animales , Apoptosis/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/fisiología , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Factores de Transcripción/metabolismo
9.
Front Physiol ; 8: 100, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28270774

RESUMEN

The takeout family genes encode relatively small proteins that are related to olfaction and are regulated by juvenile hormone (JH). The takeout genes modulate various physiological processes, such as behavioral plasticity in the migratory locust Locusta migraloria and feeding and courtship behaviors in Drosophila. Therefore, to understand the regulatory mechanism of these physiological processes, it is important to study the expressions of the takeout genes that are regulated by JH signaling. We used quantitative real-time PCR (qRTPCR) to study the role of JH signaling in the regulation of the takeout family genes in the brown planthopper Nilaparvata lugens (N. lugens) through the application of Juvenile hormone III (JHIII) and the down-regulation of key genes in the JH signaling pathway. The topical application of JHIII induced the expressions of most of the takeout family genes, and their expressions decreased 2 and 3 days after the JHIII application. Down-regulating the brown planthopper JH receptor NlMethoprene-tolerant (NlMet) and its interacting partners, NlTaiman (NlTai) and Nlß-Ftz-F1 (Nlß-Ftz), through RNAi, exhibited distinct effects on the expressions of the takeout family genes. The down-regulation of NlMet and NlKrüppel-homolog 1 (NlKr-h1) increased the expressions of the takeout family genes, while the down-regulation of the Met interacting partners NlTai and Nlß-Ftz decreased the expressions of most of the takeout family genes. This work advanced our understanding of the molecular function and the regulatory mechanism of JH signaling.

10.
Insect Biochem Mol Biol ; 82: 31-40, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28137505

RESUMEN

Taiman (Tai) has been recently identified as the dimerizing partner of juvenile hormone (JH) receptor, Methoprene-tolerant (Met). However, the role of Tai isoforms in transducing vitellogenic signal of JH has not been determined. In this study, we show that the migratory locust Locusta migratoria has two Tai isoforms, which differ in an INDEL-1 domain with the PRD-repeat motif rich in histidine and proline at the C-terminus. Tai-A with the INDEL-1 is expressed at levels about 50-fold higher than Tai-B without the INDEL-1 in the fat body of vitellogenic adult females. Knockdown of Tai-A but not Tai-B results in a substantial reduction of vitellogenin expression in the fat body accompanied by the arrest of ovarian development and oocyte maturation, similar to that caused by depletion of both Tai isoforms. Either Tai-A or Tai-B combined with Met can induce target gene transcription in response to JH, but Tai-A appears to mediate a significantly higher transactivation. Our data suggest that the INDEL-1 domain plays a critical role in Tai function during reproduction as Tai-A appears be more active than Tai-B in transducing the vitellogenic JH signal in L. migratoria.


Asunto(s)
Cuerpo Adiposo/metabolismo , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Locusta migratoria/metabolismo , Vitelogénesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Datos de Secuencia Molecular , Oocitos/crecimiento & desarrollo , Isoformas de Proteínas/metabolismo , Transducción de Señal
11.
Curr Biol ; 26(16): 2101-13, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27476594

RESUMEN

Cancer cells have abnormal gene expression profiles; however, to what degree these are chaotic or driven by structured gene regulatory networks is often not known. Here we studied a model of Ras-driven invasive tumorigenesis in Drosophila epithelial tissues and combined in vivo genetics with next-generation sequencing and computational modeling to decipher the regulatory logic of tumor cells. Surprisingly, we discovered that the bulk of the tumor-specific gene expression is controlled by an ectopic network of a few transcription factors that are overexpressed and/or hyperactivated in tumor cells. These factors are Stat, AP-1, the bHLH proteins Myc and AP-4, the nuclear hormone receptor Ftz-f1, the nuclear receptor coactivator Taiman/SRC3, and Mef2. Notably, many of these transcription factors also are hyperactivated in human tumors. Bioinformatic analysis predicted that these factors directly regulate the majority of the tumor-specific gene expression, that they are interconnected by extensive cross-regulation, and that they show a high degree of co-regulation of target genes. Indeed, the factors of this network were required in multiple epithelia for tumor growth and invasiveness, and knockdown of several factors caused a reversion of the tumor-specific expression profile but had no observable effect on normal tissues. We further found that the Hippo pathway effector Yorkie was strongly activated in tumor cells and initiated cellular reprogramming by activating several transcription factors of this network. Thus, modeling regulatory networks identified an ectopic and ordered network of master regulators that control a large part of tumor cell-specific gene expression.


Asunto(s)
Carcinogénesis , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Transducción de Señal , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
12.
J Insect Physiol ; 93-94: 72-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27570150

RESUMEN

Juvenile hormone (JH) produced by the corpus allatum (CA) stimulates vitellogenesis and reduces the synthesis of hexamerin proteins in adult females of Pyrrhocoris apterus. At present it is unknown whether the signaling pathway involving the JH receptor gene Methoprene tolerant (Met) and its binding partner Taiman (Tai), regulates the synthesis of accessory gland proteins (ACPs) and hexamerin proteins or effects male survival. Knockdown of genes by injecting Met dsRNA or Tai dsRNA, reduced the amount of ACPs whilst enhancing the amount of hexamerin mRNA in the fat body and the release of hexamerin proteins into haemolymph, as occurs after the ablation of CA. Lifespan was enhanced by injecting Met but not Tai dsRNA. Diapause associated with the natural absence of JH had a stronger effect on all these parameters than the ablation of CA or the knockdown of genes. This indicates there is an additional regulating agent. Both Met and Tai dsRNA induced a several fold increase in JH (JH III skiped bisepoxide) but a concurrent loss of Met or Tai disabled its function. This supports the view that the Met/Tai complex functions as a JH receptor in the regulation of ACPs and hexamerins.


Asunto(s)
Corpora Allata/fisiología , Heterópteros/fisiología , Hormonas Juveniles/genética , Transducción de Señal , Animales , Corpora Allata/cirugía , Técnicas de Silenciamiento del Gen , Hemolinfa/química , Heterópteros/genética , Hormonas Juveniles/sangre , Hormonas Juveniles/metabolismo , Masculino , Interferencia de ARN , Reproducción
13.
Cell Discov ; 2: 16006, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462453

RESUMEN

The Hippo signaling pathway regulates tissue growth and organ size through controlling cell growth, proliferation and apoptosis. During these processes, the coactivator Yorkie partners with the transcription factor Scalloped to mediate Hippo pathway-regulated cellular functions. Here, we demonstrate that Taiman facilitates the activity of Yorkie. First, Taiman overexpression upregulates Hippo pathway-responsive genes and induces tissue overgrowth. Second, the loss of tai downregulates the expression of Hippo pathway target genes and reduces organ size as well as tissue overgrowth caused by Yorkie overexpression. Furthermore, we provide evidence that Taiman binds to Yorkie and facilitates the activity of Yorkie-Scalloped to activate the transcription of several Hippo pathway target genes. Moreover, we found that the C-terminus of Taiman is indispensable for the function of Taiman in Hippo signaling. Finally, we demonstrate that Taiman is also required in intestinal stem cell proliferation. Our findings suggest Taiman is an essential coactivator of Yorkie.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA