Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2674: 295-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258976

RESUMEN

Bacterial host cell invasion has routinely been investigated by gentamicin protection assays, which are laborsome and suffer from pronounced experimental noise. This chapter describes an internally controlled, medium- to high-throughput method that resolves the capacity of multiple Salmonella virulence factor mutant strains to bind and invade host cells. The method, widely applicable to also other pathogens, is based on the combination of consortia of genetically tagged isogenic bacterial strains and a modified gentamicin protection assay. These protocols provide a flexible tool box to stringently quantify host cell binding and invasive properties of different mutants. Moreover, the method can be applied to both infections of cultured host cells and in vivo animal models, providing a comparable genetic readout, which greatly facilitates comparisons across experimental models.


Asunto(s)
Salmonella typhimurium , Factores de Virulencia , Animales , Salmonella typhimurium/genética , Factores de Virulencia/metabolismo , Células Cultivadas
2.
Microbiol Spectr ; 10(5): e0150422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36005449

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Ratones , Humanos , Animales , Cryptococcus neoformans/genética , Histonas , Higromicina B , Interacciones Huésped-Patógeno , Neomicina , Biología
3.
BMC Bioinformatics ; 22(1): 98, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648451

RESUMEN

BACKGROUND: Tracking dispersal of microbial populations in the environment requires specific detection methods that discriminate between the target strain and all potential natural and artificial interferents, including previously utilized tester strains. Recent work has shown that genomic insertion of short identification tags, called "barcodes" here, allows detection of chromosomally tagged strains by real-time PCR. Manual design of these barcodes is feasible for small sets, but expansion of the technique to larger pools of distinct and well-functioning assays would be significantly aided by software-guided design. RESULTS: Here we introduce barCoder, a bioinformatics tool that facilitates the process of creating sets of uniquely identifiable barcoded strains. barCoder utilizes the genomic sequence of the target strain and a set of user-specified PCR parameters to generate a list of suggested barcode "modules" that consist of binding sites for primers and probes, and appropriate spacer sequences. Each module is designed to yield optimal PCR amplification and unique identification. Optimal amplification includes metrics such as ideal melting temperature and G+C content, appropriate spacing, and minimal stem-loop formation; unique identification includes low BLAST hits against the target organism, previously generated barcode modules, and databases (such as NCBI). We tested the ability of our algorithm to suggest appropriate barcodes by generating 12 modules for Bacillus thuringiensis serovar kurstaki-a simulant for the potential biowarfare agent Bacillus anthracis-and three each for other potential target organisms with variable G+C content. Real-time PCR detection assays directed at barcodes were specific and yielded minimal cross-reactivity with a panel of near-neighbor and potential contaminant materials. CONCLUSIONS: The barCoder algorithm facilitates the generation of synthetically barcoded biological simulants by (a) eliminating the task of creating modules by hand, (b) minimizing optimization of PCR assays, and (c) reducing effort wasted on non-unique barcode modules.


Asunto(s)
Bacillus anthracis , Código de Barras del ADN Taxonómico , Cartilla de ADN , Algoritmos , Bacillus anthracis/genética , Genoma , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
J R Soc Interface ; 17(168): 20200299, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634369

RESUMEN

Antibiotic therapy has drastically reduced the mortality and sequelae of bacterial infections. From naturally occurring to chemically synthesized, different classes of antibiotics have been successfully used without detailed knowledge of how they affect bacterial dynamics in vivo. However, a proportion of patients receiving antimicrobial therapy develop recrudescent infections post-treatment. Relapsing infections are attributable to incomplete clearance of bacterial populations following antibiotic administration; the metabolic profile of this antibiotic-recalcitrant bacterial subpopulation, the spatio-temporal context of its emergence and the variance of antibiotic-bacterial interactions in vivo remain unclear. Here, we develop and apply a mechanistic mathematical model to data from a study comparing the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica serovar Typhimurium in murine infections. Using the inferential capacity of our model, we show that the antibiotic-recalcitrant bacteria following ampicillin, but not ciprofloxacin, treatment belong to a non-replicating phenotype. Aligning with previous studies, we independently estimate that the lymphoid tissues and spleen are important reservoirs of non-replicating bacteria. Finally, we predict that post-treatment, the progenitors of the non-growing and growing bacterial populations replicate and die at different rates. Ultimately, the liver, spleen and mesenteric lymph nodes are all repopulated by progenitors of the previously non-growing phenotype in ampicillin-treated mice.


Asunto(s)
Ciprofloxacina , Salmonella enterica , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Teóricos , Recurrencia
5.
Vet Microbiol ; 220: 97-106, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29885808

RESUMEN

Feedlot cattle often contain Salmonella. The number of bacteria that initiate colonization of different cattle organs and the bacterial migration within these large animals are poorly understood. To investigate these questions, we constructed wild-type isogenic tagged strains (WITS) of Salmonella by inserting 21-base barcodes flanked by Illumina sequencing primers into a neutral genome location. We then delivered several different pools of uniquely barcoded clones orally and into multiple intradermal sites, in individual Holstein steers, and subsequently performed Salmonella-directed sequence tag-based analysis of microbial populations (STAMP). Using high-throughput sequencing of the barcodes of Salmonella grown from steer lymph nodes, organs and feces, we monitored how individual barcoded clones travel from different entry sites within animals. Data showed that gastrointestinal colonization was established by up to hundreds of Salmonella founder cells, whereas peripheral lymph nodes were usually colonized by very low numbers of founding bacteria, often originating from the nearest draining intradermal delivery site. Transmission of Salmonella from the gastrointestinal tract to the lymphatic system was frequently observed, whereas entry of intradermally delivered bacteria into the gut was rare. Bacteria undergo limited extraintestinal proliferation within or prior to arrival at peripheral lymph nodes. Overall, the application of the STAMP technique facilitated characterization of the migration routes and founder population size of Salmonella within feedlot cattle and their organs and lymph nodes in unprecedented detail.


Asunto(s)
Bovinos/microbiología , Etiquetas de Secuencia Expresada , Genoma Bacteriano/genética , Ganglios Linfáticos/microbiología , Salmonelosis Animal/microbiología , Salmonella/genética , Animales , Carga Bacteriana/genética , Enfermedades de los Bovinos/microbiología , Recuento de Colonia Microbiana , Heces/microbiología , Tracto Gastrointestinal/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Salmonella/fisiología , Salmonelosis Animal/epidemiología
6.
J Theor Biol ; 435: 218-228, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28919397

RESUMEN

Recent technical developments in microbiology have led to new discoveries on the within-host dynamics of bacterial infections in laboratory animals. In particular, they have highlighted the importance of stochastic bottlenecks at the onset of invasive disease. A number of approaches exist for bottleneck-size estimation with respect to within-host bacterial infections; however, some are more appropriate than others under certain circumstances. A Bayesian comparison of several approaches is made in terms of the availability of isogenic multitype bacteria (e.g., WITS), knowledge of post-bottleneck dynamics, and the suitability of dilution with monotype bacteria. A sampling approach to bottleneck-size estimation is also introduced. The results are summarised by a guiding flowchart, which we hope will promote the use of quantitative models in microbiology to refine the analysis of animal experiment data.


Asunto(s)
Infecciones Bacterianas/microbiología , Teorema de Bayes , Modelos Biológicos , Animales , Interacciones Huésped-Patógeno , Microbiota
7.
Microbiologyopen ; 3(5): 657-67, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044599

RESUMEN

Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.


Asunto(s)
Antibiosis , Escherichia coli/fisiología , Serratia marcescens/fisiología , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biodegradación Ambiental , Escherichia coli/genética , Serratia marcescens/genética , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA