Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Anesthesiol ; 23(1): 145, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120567

RESUMEN

BACKGROUND: Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS: The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS: Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS: Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.


Asunto(s)
Nociceptores , Canales de Sodio , Ratas , Animales , Tetrodotoxina/farmacología , Tetrodotoxina/metabolismo , Nociceptores/metabolismo , Canales de Sodio/metabolismo , Canales de Sodio/farmacología , Hidrato de Cloral/farmacología , Hidrato de Cloral/metabolismo , Potenciales de la Membrana/fisiología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo
2.
J Headache Pain ; 23(1): 73, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764917

RESUMEN

BACKGROUND: Growing evidence supports the important role of persistent sodium currents (INaP) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na+ channel-mediated INaP in the neuronal excitability of nociceptive neurons remains poorly understood. METHODS: We investigated the functional role of TTX-R INaP in the excitability of C-type nociceptive dural afferent neurons, which was identified using a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchloride (DiI), and a whole-cell patch-clamp technique. RESULTS: TTX-R INaP were found in most DiI-positive neurons, but their density was proportional to neuronal size. Although the voltage dependence of TTX-R Na+ channels did not differ among DiI-positive neurons, the extent of the onset of slow inactivation, recovery from inactivation, and use-dependent inhibition of these channels was highly correlated with neuronal size and, to a great extent, the density of TTX-R INaP. In the presence of TTX, treatment with a specific INaP inhibitor, riluzole, substantially decreased the number of action potentials generated by depolarizing current injection, suggesting that TTX-R INaP are related to the excitability of dural afferent neurons. In animals treated chronically with inflammatory mediators, the density of TTX-R INaP was significantly increased, and it was difficult to inactivate TTX-R Na+ channels. CONCLUSIONS: TTX-R INaP apparently contributes to the differential properties of TTX-R Na+ channels and neuronal excitability. Consequently, the selective modulation of TTX-R INaP could be, at least in part, a new approach for the treatment of migraine headaches.


Asunto(s)
Neuronas Aferentes , Canales de Sodio , Animales , Potenciales de la Membrana/fisiología , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Tetrodotoxina/farmacología
3.
Eur J Pharmacol ; 910: 174449, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34454925

RESUMEN

Propranolol, a representative adrenergic ß-receptor antagonist, is widely used to prevent migraine attacks. Although propranolol is well known to inhibit tetrodotoxin-resistant (TTX-R) Na+ channels in cardiac myocytes, it is unclear whether the drug modulates these channels expressed in dural afferent neurons. In this study, we examined the effects of propranolol on TTX-R Na+ channels in medium-sized dural afferent neurons identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from acutely isolated DiI-positive neurons using a whole-cell patch clamp technique under voltage-clamp conditions. Propranolol inhibited the noninactivating steady-state component more potently than the peak component of transient TTX-R INa. Propranolol also potently inhibited the slow voltage ramp-induced TTX-R INa in a concentration-dependent manner, suggesting that it preferentially inhibited the noninactivating or persistent INa in DiI-positive neurons. Propranolol had little effect on voltage dependence, but it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Propranolol also accelerated the onset of inactivation and retarded recovery from inactivation in these channels. Under current-clamp conditions, propranolol decreased the number of action potentials elicited by depolarizing current stimuli. In conclusion, the propranolol-mediated preferential inhibition of persistent INa and modulation of the inactivation kinetics of TTX-R Na+ channels might represent additional mechanisms for migraine prophylaxis.


Asunto(s)
Neuronas Aferentes/metabolismo , Neuronas/efectos de los fármacos , Propranolol/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología , Animales , Conductividad Eléctrica , Colorantes Fluorescentes , Activación del Canal Iónico , Masculino , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Neuronas Aferentes/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Canales de Sodio/efectos de los fármacos
4.
Eur J Pharmacol ; 838: 69-77, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30194938

RESUMEN

Migraine is characterized by recurrent and disabling headaches; therefore, several drugs have been widely prescribed to prevent acute migraine attacks. Amitriptyline, a tricyclic antidepressant, is among the most commonly administered. It is poorly known, however, whether amitriptyline modulates the excitability of dural afferent neurons that transmit pain signals from the dura mater. In this study, the effects of amitriptyline on tetrodotoxin-resistant (TTX-R) Na+ channels were examined in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents (INa) were recorded from medium-sized DiI-positive neurons using a whole-cell patch clamp technique. Amitriptyline (3 µM) slightly reduced the peak component of transient INa and induced a marked decrease in the steady-state component of transient TTX-R INa, as well as in the slow ramp-induced TTX-R INa. Our findings suggest that amitriptyline specifically inhibits persistent Na+ currents mediated by TTX-R Na+ channels. While amitriptyline had minor effects on voltage-activation/inactivation, it increased the extent of the use-dependent inhibition of TTX-R Na+ channels. Amitriptyline also affected the inactivation kinetics of TTX-R Na+ channels by significantly accelerating the inactivation of TTX-R Na+ channels and slowing the subsequent recovery. Amitriptyline decreased the number of action potentials by increasing the threshold for their generation. In conclusion, the amitriptyline-mediated diverse modulation of TTX-R Na+ channels would be, at least in part, responsible for its prophylactic efficacy for migraine attacks.


Asunto(s)
Amitriptilina/farmacología , Antidepresivos Tricíclicos/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Nociceptores/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Amitriptilina/uso terapéutico , Animales , Antidepresivos Tricíclicos/uso terapéutico , Duramadre/citología , Duramadre/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Trastornos Migrañosos/patología , Nociceptores/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología
5.
Neuropharmacology ; 105: 454-462, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26898291

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Concentración de Iones de Hidrógeno , Indometacina/farmacología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Canales de Sodio/metabolismo , Animales , Aspirina/farmacología , Células Cultivadas , Femenino , Ibuprofeno/farmacología , Cinética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Naproxeno/farmacología , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-26176424

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory pain. It is well established that NSAIDs exert their analgesic effects by inhibiting cyclooxygenase to prevent the production of prostaglandins; however, several NSAIDs including diclofenac also modulate other ion channels expressed in nociceptive neurons. In this study, we investigated the pH-dependent effects of diclofenac on tetrodotoxin-resistant (TTX-R) Na(+) channels in rat trigeminal sensory neurons by using the whole-cell patch clamp technique. Diclofenac decreased the peak amplitude of TTX-R Na(+) currents (INa) in a concentration dependent manner. While diclofenac had little effect on the voltage-activation relationship, it significantly shifted the steady-state fast inactivation relationship toward hyperpolarized potentials. Diclofenac increased the extent of use-dependent inhibition of TTX-R Na(+) currents. Diclofenac also significantly accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels. The effects of diclofenac on TTX-R Na(+) channels were stronger at pH 6.0 than at pH7.4 for most of the parameters tested. Considering that the extracellular pH falls in inflamed tissues, and that TTX-R Na(+) channels expressed on nociceptive neurons are implicated in the prostaglandin-mediated development and maintenance of inflammatory hyperalgesia, our findings could provide an additional analgesic effect of diclofenac under acidic pH conditions.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Diclofenaco/farmacología , Espacio Extracelular/metabolismo , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Canales de Sodio/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Nervio Trigémino/efectos de los fármacos , Nervio Trigémino/fisiología
7.
Neuropharmacology ; 90: 82-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25437826

RESUMEN

Under pathological conditions including inflammation, ischemia and incision, extracellular pH falls down as low as 5.4. Although some mediators play pivotal roles in the development and maintenance of inflammatory hyperalgesia by affecting the functional properties of tetrodotoxin-resistant (TTX-R) Na(+) channels, the roles of tissue acidosis in nociceptive transmission mediated by TTX-R Na(+) channels are largely unknown. In the present study, we have investigated the effect of acidic pH on TTX-R Na(+) currents (I(Na)) in small-sized sensory neurons isolated from rat trigeminal ganglia using a whole-cell patch clamp technique. Acidic pH decreased the peak amplitude of TTX-R I(Na) in a pH-dependent manner, but weak acid (≥pH 6.0) had a minor inhibitory effect on the TTX-R I(Na). Acidic pH also significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. In addition, acidic pH had little effect on the use-dependent inhibition, and significantly retarded the development of inactivation and accelerated the recovery from inactivation of TTX-R Na(+) channels. The results suggest that weak acid (≥pH 6.0) makes TTX-R Na(+) channels to be suitable for the repetitive activation at depolarized membrane potentials. Given that both tissue acidosis and inflammatory mediators in inflamed or injured tissues act synergistically to promote nociceptive transmission by affecting the functional properties of TTX-R Na(+) channels, these channels would be, at least in part, a good target to treat inflammatory pain.


Asunto(s)
Ácidos/metabolismo , Nociceptores/fisiología , Canales de Sodio/metabolismo , Ganglio del Trigémino/fisiología , Animales , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Nociceptores/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Ganglio del Trigémino/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA