Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1392015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841113

RESUMEN

Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Modelos Animales de Enfermedad , Glucosiltransferasas , Pulmón , Factores de Virulencia , Animales , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/inmunología , Criptococosis/microbiología , Criptococosis/inmunología , Ratones , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Pulmón/microbiología , Pulmón/patología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Encéfalo/microbiología , Bazo/microbiología , Femenino , Ratones Endogámicos C57BL , Inmunidad Innata , Evasión Inmune , Eliminación de Gen
2.
Plant Commun ; 5(7): 100878, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38475995

RESUMEN

Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.


Asunto(s)
Brassicaceae , Genoma de Planta , Cariotipo , Filogenia , Brassicaceae/genética , Evolución Molecular , Cromosomas de las Plantas/genética
3.
Insects ; 14(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37103172

RESUMEN

The effect of maternally inherited endosymbiotic bacteria Wolbachia on triglyceride and carbohydrate metabolism, starvation resistance and feeding behavior of Drosophila melanogaster females was studied. Eight D. melanogaster lines of the same nuclear background were investigated; one had no infection and served as the control, and seven others were infected with different Wolbachia strains pertaining to wMel and wMelCS groups of genotypes. Most of the infected lines had a higher overall lipid content and triglyceride level than the control line and their expression of the bmm gene regulating triglyceride catabolism was reduced. The glucose content was higher in the infected lines compared to that in the control, while their trehalose levels were similar. It was also found that the Wolbachia infection reduced the level of tps1 gene expression (coding for enzyme for trehalose synthesis from glucose) and had no effect on treh gene expression (coding for trehalose degradation enzyme). The infected lines exhibited lower appetite but higher survival under starvation compared to the control. The data obtained may indicate that Wolbachia foster their hosts' energy exchange through increasing its lipid storage and glucose content to ensure the host's competitive advantage over uninfected individuals. The scheme of carbohydrate and lipid metabolism regulation under Wolbachia's influence was suggested.

4.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993618

RESUMEN

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million deaths worldwide each year. Yet the arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional fungal-specific biosynthetic pathways. One such pathway involves the biosynthesis of trehalose. Trehalose is a non-reducing disaccharide composed of two molecules of glucose that is required for pathogenic fungi, including Candida albicans and Cryptococcus neoformans, to survive in their human hosts. Trehalose biosynthesis is a two-step process in fungal pathogens. Trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P). Subsequently, trehalose-6-phosphate phosphatase (Tps2) converts T6P to trehalose. The trehalose biosynthesis pathway has been identified as a top candidate for novel antifungal development based on quality, occurrence, specificity, and assay development. However, there are currently no known antifungal agents that target this pathway. As initial steps to develop Tps1 from Cryptococcus neoformans (CnTps1) as a drug target, we report the structures of full-length apo CnTps1 and CnTps1 in complex with uridine diphosphate (UDP) and glucose-6-phosphate (G6P). Both CnTps1 structures are tetramers and display D2 (222) molecular symmetry. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies key residues required for substrate-binding, which are conserved amongst other Tps1 enzymes, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), encompassing residues M209 to I300, which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in the density maps. Although, activity assays revealed that the highly conserved IDD is not required for catalysis in vitro, we hypothesize that the IDD is required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Characterization of the substrate specificity of CnTps1 revealed that UDP-galactose, an epimer of UDP-glucose, is a very poor substrate and inhibitor of the enzyme and highlights the exquisite substrate specificity of Tps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.

5.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-35929793

RESUMEN

In the yeast Saccharomyces cerevisiae, trehalose-6-phospahte synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2) are the main proteins catalyzing intracellular trehalose production. In addition to Tps1 and Tps2, 2 putative regulatory proteins with less clearly defined roles also appear to be involved with trehalose production, Tps3 and Tsl1. While this pathway has been extensively studied in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. Here we deleted the TPS1, TPS2, TPS3, and TSL1 genes in 4 wild strains and 1 laboratory strain for comparison. Although some tested phenotypes were not shared between all strains, deletion of TPS1 abolished intracellular trehalose, caused inability to grow on fermentable carbon sources and resulted in severe sporulation deficiency for all 5 strains. After examining tps1 mutant strains expressing catalytically inactive variants of Tps1, our results indicate that Tps1, independent of trehalose production, is a key component for yeast survival in response to heat stress, for regulating sporulation, and growth on fermentable sugars. All tps2Δ mutants exhibited growth impairment on nonfermentable carbon sources, whereas variations were observed in trehalose synthesis, thermosensitivity and sporulation efficiency. tps3Δ and tsl1Δ mutants exhibited mild or no phenotypic disparity from their isogenic wild type although double mutants tps3Δ tsl1Δ decreased the amount of intracellular trehalose production in all 5 strains by 17-45%. Altogether, we evaluated, confirmed, and expanded the phenotypic characteristics associated trehalose biosynthesis mutants. We also identified natural phenotypic variants in multiple strains that could be used to genetically dissect the basis of these traits and then develop mechanistic models connecting trehalose metabolism to diverse cellular processes.


Asunto(s)
Saccharomyces cerevisiae , Trehalosa , Saccharomyces cerevisiae/metabolismo , Trehalosa/genética , Trehalosa/metabolismo , Glucosiltransferasas/genética , Glucólisis , Fenotipo , Carbono/metabolismo
6.
Metabolites ; 12(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36005599

RESUMEN

Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum (Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins produced by Fg are harmful to the environment and humans. In our previous study, we obtained two mutants TPS1- and TPS2-. Neither of these mutants could synthesize trehalose, and they produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O, the TPS- mutants and wild type (WT) using NMR combined with multivariate analysis. More than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids, choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear metabolic differences between inoculation with mutants (TPS1-/TPS2-) and with ddH2O/WT. For the susceptible wheat, there were obvious metabolic differences between inoculation with mutant (TPS1-/TPS2-) and inoculation with ddH2O; however, there were no significant metabolic differences between inoculation with TPS- mutants and with WT. Specifically, compared with ddH2O, resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid in response to TPS- mutants; however, susceptible wheat did not. Shikimate-mediated secondary metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat remains to be further studied.

7.
Mol Biol Rep ; 49(10): 9387-9396, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35908239

RESUMEN

BACKGROUND: Diploid cells of Saccharomyces cerevisiae undergo either pseudohyphal differentiation or sporulation in response to depletion of carbon and nitrogen sources. Distinct signaling pathways regulate filamentation and sporulation in response to nutrient limitation. How these pathways are coordinated for implementing distinct cell fate decisions in response to similar nutritional cues is an enigma. Although the role of trehalose pathway in sporulation has been extensively studied, it's possible role in pseudohyphal differentiation has been unexplored. METHODS AND RESULTS: Briefly, tps1 and tps2 mutants were tested for their ability to form pseudohyphae independently as well as in the background of GPR1 and RAS2 mutations. Here, we demonstrate that disruption of TPS1 but not TPS2 inhibits pseudohyphae formation. Interestingly, deletion of GPR1 suppresses the above defect. Further genetic analysis revealed that TPS1 and TPS2 exert opposing effects in triggering filamentation. CONCLUSION: We provide new insights into the role of an otherwise well-known pathway of trehalose biosynthesis in pseudohyphal differentiation. Based on additional data we propose that downstream signaling, mediated by cAMP may be modulated by nutrient mediated differential regulation of RAS2 by TPS1 and TPS2.


Asunto(s)
Saccharomyces cerevisiae , Trehalosa , Vías Biosintéticas , Carbono/metabolismo , Glucosiltransferasas/genética , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trehalosa/metabolismo
8.
New Phytol ; 235(1): 220-233, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35306666

RESUMEN

Sensing carbohydrate availability is essential for plants to coordinate their growth and development. In Arabidopsis thaliana, TREHALOSE 6-PHOSPHATE SYNTHASE 1 (TPS1) and its product, trehalose 6-phosphate (T6P), are important for the metabolic control of development. tps1 mutants are embryo-lethal and unable to flower when embryogenesis is rescued. T6P regulates development in part through inhibition of SUCROSE NON-FERMENTING1 RELATED KINASE1 (SnRK1). Here, we explored the role of SnRK1 in T6P-mediated plant growth and development using a combination of a mutant suppressor screen and genetic, cellular and transcriptomic approaches. We report nonsynonymous amino acid substitutions in the catalytic KIN10 and regulatory SNF4 subunits of SnRK1 that can restore both embryogenesis and flowering of tps1 mutant plants. The identified SNF4 point mutations disrupt the interaction with the catalytic subunit KIN10. Contrary to the common view that the two A. thaliana SnRK1 catalytic subunits act redundantly, we found that loss-of-function mutations in KIN11 are unable to restore embryogenesis and flowering, highlighting the important role of KIN10 in T6P signalling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfatos de Azúcar , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fosfatos de Azúcar/metabolismo , Factores de Transcripción/metabolismo , Trehalosa/metabolismo
9.
Front Cell Dev Biol ; 9: 607628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585476

RESUMEN

Single-cell variability of growth is a biological phenomenon that has attracted growing interest in recent years. Important progress has been made in the knowledge of the origin of cell-to-cell heterogeneity of growth, especially in microbial cells. To better understand the origins of such heterogeneity at the single-cell level, we developed a new methodological pipeline that coupled cytometry-based cell sorting with automatized microscopy and image analysis to score the growth rate of thousands of single cells. This allowed investigating the influence of the initial amount of proteins of interest on the subsequent growth of the microcolony. As a preliminary step to validate this experimental setup, we referred to previous findings in yeast where the expression level of Tsl1, a member of the Trehalose Phosphate Synthase (TPS) complex, negatively correlated with cell division rate. We unfortunately could not find any influence of the initial TSL1 expression level on the growth rate of the microcolonies. We also analyzed the effect of the natural variations of trehalose-6-phosphate synthase (TPS1) expression on cell-to-cell growth heterogeneity, but we did not find any correlation. However, due to the already known altered growth of the tps1Δ mutants, we tested this strain at the single-cell level on a permissive carbon source. This mutant showed an outstanding lack of reproducibility of growth rate distributions as compared to the wild-type strain, with variable proportions of non-growing cells between cultivations and more heterogeneous microcolonies in terms of individual growth rates. Interestingly, this variable behavior at the single-cell level was reminiscent to the high variability that is also stochastically suffered at the population level when cultivating this tps1Δ strain, even when using controlled bioreactors.

10.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109759

RESUMEN

Whereas the yeast Saccharomyces cerevisiae shows great preference for glucose as a carbon source, a deletion mutant in trehalose-6-phosphate synthase, tps1Δ, is highly sensitive to even a few millimolar glucose, which triggers apoptosis and cell death. Glucose addition to tps1Δ cells causes deregulation of glycolysis with hyperaccumulation of metabolites upstream and depletion downstream of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The apparent metabolic barrier at the level of GAPDH has been difficult to explain. We show that GAPDH isozyme deletion, especially Tdh3, further aggravates glucose sensitivity and metabolic deregulation of tps1Δ cells, but overexpression does not rescue glucose sensitivity. GAPDH has an unusually high pH optimum of 8.0 to 8.5, which is not altered by tps1Δ. Whereas glucose causes short, transient intracellular acidification in wild-type cells, in tps1Δ cells, it causes permanent intracellular acidification. The hxk2Δ and snf1Δ suppressors of tps1Δ restore the transient acidification. These results suggest that GAPDH activity in the tps1Δ mutant may be compromised by the persistently low intracellular pH. Addition of NH4Cl together with glucose at high extracellular pH to tps1Δ cells abolishes the pH drop and reduces glucose-6-phosphate (Glu6P) and fructose-1,6-bisphosphate (Fru1,6bisP) hyperaccumulation. It also reduces the glucose uptake rate, but a similar reduction in glucose uptake rate in a tps1Δ hxt2,4,5,6,7Δ strain does not prevent glucose sensitivity and Fru1,6bisP hyperaccumulation. Hence, our results suggest that the glucose-induced intracellular acidification in tps1Δ cells may explain, at least in part, the apparent glycolytic bottleneck at GAPDH but does not appear to fully explain the extreme glucose sensitivity of the tps1Δ mutant.IMPORTANCE Glucose catabolism is the backbone of metabolism in most organisms. In spite of numerous studies and extensive knowledge, major controls on glycolysis and its connections to the other metabolic pathways remain to be discovered. A striking example is provided by the extreme glucose sensitivity of the yeast tps1Δ mutant, which undergoes apoptosis in the presence of just a few millimolar glucose. Previous work has shown that the conspicuous glucose-induced hyperaccumulation of the glycolytic metabolite fructose-1,6-bisphosphate (Fru1,6bisP) in tps1Δ cells triggers apoptosis through activation of the Ras-cAMP-protein kinase A (PKA) signaling pathway. However, the molecular cause of this Fru1,6bisP hyperaccumulation has remained unclear. We now provide evidence that the persistent drop in intracellular pH upon glucose addition to tps1Δ cells likely compromises the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a major glycolytic enzyme downstream of Fru1,6bisP, due to its unusually high pH optimum. Our work highlights the potential importance of intracellular pH fluctuations for control of major metabolic pathways.


Asunto(s)
Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Saccharomyces cerevisiae/enzimología , Apoptosis , Citoplasma/química , Fermentación , Fructosadifosfatos/análisis , Eliminación de Gen , Glucosa-6-Fosfato/análisis , Glucólisis , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas , Mutación , Saccharomyces cerevisiae/genética
11.
Plant J ; 104(3): 768-780, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799402

RESUMEN

The vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P. These lines show a significant delay in vegetative phase change, under both short and long day conditions. Induced expression of TPS1 complements this delay in the TPS1 knockout mutant (tps1-2 GVG::TPS1). Further analyses indicate that the T6P pathway promotes vegetative phase transition by suppressing miR156 expression and thereby modulating the levels of its target transcripts, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes. TPS1 knockdown plants, with a delayed vegetative phase change phenotype, accumulate significantly more sucrose than wild-type plants as a result of a feedback mechanism. In summary, we conclude that the T6P pathway forms an integral part of an endogenous mechanism that influences phase transitions dependent on the metabolic state.


Asunto(s)
Arabidopsis/fisiología , Glucosiltransferasas/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Proteínas de Arabidopsis/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Redes y Vías Metabólicas , MicroARNs/genética , Mutación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Sacarosa/metabolismo , Trehalosa/metabolismo
12.
FEMS Microbiol Lett ; 367(10)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32319521

RESUMEN

Trehalose is a non-reducing disaccharide composed of two α-glucose molecules and synthesized by an enzyme complex containing four subunits TPS1 (EC 2.4.1.15), TPS2 (EC 3.1.3.12), TPS3 and TSL1. First reports about trehalose classified this sugar as an energy reserve compound like glycogen. However, lately, trehalose is known to assist yeast cells during heat, osmotic and starvation stresses. In Saccharomyces cerevisiae, the deletion of the tps1 encoding gene eliminated the yeast ability to grow on glucose as the sole carbon source. Kluyveromyces lactis is a yeast present in various dairy products and is currently utilized for the synthesis of more than 40 industrial heterologous products. In this study, the deletion of the tps1 gene in K. lactis showed that unlike S. cerevisiae, tps1 gene disruption does not cause growth failure in glucose, galactose, or fructose. The µMAX rate values of K. lactis tps1Δ strains were equal than the non-disrupted strains, showing that the gene deletion does not affect the yeast growth. After gene disruption, the absence of trehalose into the metabolism of K. lactis was also confirmed.


Asunto(s)
Eliminación de Gen , Genes Fúngicos/genética , Glucosa/metabolismo , Glucosiltransferasas/genética , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/genética
13.
BMC Plant Biol ; 19(1): 382, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481026

RESUMEN

BACKGROUND: Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS: Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION: Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.


Asunto(s)
MicroARNs/genética , Persea/fisiología , ARN de Planta/genética , Persea/genética
14.
J Med Microbiol ; 68(10): 1479-1488, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31380734

RESUMEN

Purpose. Fungal infections have increased in recent decades, with Candida albicans being the fourth most common aetiological agent of nosocomial infections. Disaccharide trehalose has been proposed as a target for the development of new antifungals. In C. albicans we have examined the susceptibility shown by two mutants deficient in trehalose biosynthesis, namely tps1Δ and tps2Δ, to amphotericin B (AmB) and micafungin (MF).Methodology. Minimum inhibitory concentrations (MICs) were calculated according to the Clinical and Laboratory Standards Institute (CLSI) criteria. Cell viability was assessed by cell counting. Intracellular reactive oxygen species (ROS) and the mitochondrial membrane potential were measured by flow cytometry, while the trehalose content and biofilm formation were determined by enzymatic assays.Results. While the tps1Δ mutant was highly sensitive to AmB exposure, its resistance to MF was similar to that of the wild-type. Notably, the opposite phenotype was recorded in the tps2Δ mutant. In turn, MF induced a significant level of endogenous ROS production in the parental SC5314 and tps2Δ cells, whereas the ROS formation in tps1Δ cells was virtually undetectable. The level of endogenous ROS correlated positively with the rise in mitochondrial activity. Only AmB was able to promote intracellular synthesis of trehalose in the parental strain; it was absent from tps1Δ cells and showed low levels in tps2Δ, confirming the unspecific dephosphorylation of trehalose-6P in C. albicans. Furthermore, the capacity of both tps1Δ and tps2Δ mutants to form biofilms was drastically reduced after AmB exposure, whereas it increased in tps1Δ cells treated with MF.Conclusion. Our data lend weight to the idea of using trehalose biosynthesis as a potential target for antifungal therapy.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Proteínas Fúngicas/genética , Glucosiltransferasas/genética , Micafungina/farmacología , Trehalosa/biosíntesis , Biopelículas/efectos de los fármacos , Candida albicans/genética , Candida albicans/fisiología , Candidiasis/microbiología , Proteínas Fúngicas/metabolismo , Glucosiltransferasas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Secuencia
15.
EMBO Rep ; 20(10): e47828, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31393060

RESUMEN

Growth plasticity is a key mechanism by which plants adapt to the ever-changing environmental conditions. Since growth is a high-energy-demanding and irreversible process, it is expected to be regulated by the integration of endogenous energy status as well as environmental conditions. Here, we show that trehalose-6-phosphate (T6P) functions as a sugar signaling molecule that coordinates thermoresponsive hypocotyl growth with endogenous sugar availability. We found that the loss of T6P SYNTHASE 1 (TPS1) in Arabidopsis thaliana impaired high-temperature-mediated hypocotyl growth. Consistently, the activity of PIF4, a transcription factor that positively regulates hypocotyl growth, was compromised in the tps1 mutant. We further show that, in the tps1 mutant, a sugar signaling kinase KIN10 directly phosphorylates and destabilizes PIF4. T6P inhibits KIN10 activity in a GRIK-dependent manner, allowing PIF4 to promote hypocotyl growth at high temperatures. Together, our results demonstrate that T6P determines thermoresponsive growth through the KIN10-PIF4 signaling module. Such regulation of PIF4 by T6P integrates the temperature-signaling pathway with the endogenous sugar status, thus optimizing plant growth response to environmental stresses.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Transducción de Señal , Fosfatos de Azúcar/metabolismo , Temperatura , Trehalosa/análogos & derivados , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosa/farmacología , Modelos Biológicos , Morfogénesis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sacarosa/farmacología , Trehalosa/metabolismo
16.
Biochem J ; 476(21): 3227-3240, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31455720

RESUMEN

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (ß3-ß4 loop to α0 helix) and movement of a 'shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a 'closed' state compared with its 'open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Asunto(s)
Proteínas Fúngicas/química , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Magnaporthe/enzimología , Biocatálisis , Dimerización , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosiltransferasas/genética , Magnaporthe/química , Magnaporthe/genética , Dominios Proteicos , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo
17.
Curr Biol ; 29(8): 1263-1272.e5, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30930040

RESUMEN

Gluconeogenesis is a well-established metabolic process whereby glucose is generated from small carbon molecules in the liver and kidney to maintain blood glucose levels. Expression of gluconeogenic genes has been reported in other organs of mammals and insects, where their function is not yet known. In the fruit fly, one of the gluconeogenic genes, glucose-6-phosphatase (G6P) is exclusively expressed in the CNS. Using a fluorescence resonance energy transfer (FRET)-based glucose sensor, we show that a small subset of neurons in the fly brain is capable of carrying out gluconeogenesis. Moreover, we find that G6P mutant flies exhibit low whole-body glucose levels within 24 h of food deprivation. This phenotype can be mimicked by silencing G6P neurons and rescued by experimentally controlled activation in the absence of G6P. These results indicate that neural activity of G6P neurons, but not glucose production per se, is critical for glucose homeostasis. Lastly, we observe that neuronal gluconeogenesis promotes anterograde neuropeptide distribution from the soma to axon terminals, suggesting that the generation of glucose facilitates neuropeptide transport. Together, our analysis reveals a novel role for gluconeogenesis in neuronal signaling.


Asunto(s)
Drosophila melanogaster/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Homeostasis , Neuronas/metabolismo , Animales , Femenino , Larva/crecimiento & desarrollo , Larva/metabolismo
18.
Microb Cell ; 5(10): 444-459, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30386789

RESUMEN

The yeast trehalose-6-phosphate synthase (Tps1) catalyzes the formation of trehalose-6-phosphate (T6P) in trehalose synthesis. Besides, Tps1 plays a key role in carbon and energy homeostasis in this microbial cell, as shown by the well documented loss of ATP and hyper accumulation of sugar phosphates in response to glucose addition in a mutant defective in this protein. The inability of a Saccharomyces cerevisiae tps1 mutant to cope with fermentable sugars is still a matter of debate. We reexamined this question through a quantitative analysis of the capability of TPS1 homologues from different origins to complement phenotypic defects of this mutant. Our results allowed to classify this complementation in three groups. A first group enclosed TPS1 of Klyveromyces lactis with that of S. cerevisiae as their expression in Sctps1 cells fully recovered wild type metabolic patterns and fermentation capacity in response to glucose. At the opposite was the group with TPS1 homologues from the bacteria Escherichia coli and Ralstonia solanacearum, the plant Arabidopsis thaliana and the insect Drosophila melanogaster whose metabolic profiles were comparable to those of a tps1 mutant, notably with almost no accumulation of T6P, strong impairment of ATP recovery and potent reduction of fermentation capacity, albeit these homologous genes were able to rescue growth of Sctps1 on glucose. In between was a group consisting of TPS1 homologues from other yeast species and filamentous fungi characterized by 5 to 10 times lower accumulation of T6P, a weaker recovery of ATP and a 3-times lower fermentation capacity than wild type. Finally, we found that glucose repression of gluconeogenic genes was strongly dependent on T6P. Altogether, our results suggest that the TPS protein is indispensable for growth on fermentable sugars, and points to a critical role of T6P as a sensing molecule that promotes sugar fermentation and glucose repression.

19.
Microb Cell ; 5(11): 511-521, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30483522

RESUMEN

Transient exposures to environmental stresses induce altered physiological states in exposed cells that persist after the stresses have been removed. These states, referred to as cellular memory, can even be passed on to daughter cells and may thus be thought of as embodying a form of epigenetic inheritance. We find that meiotically produced spores in the budding yeast S. cerevisiae possess a state of heightened stress resistance that, following their germination, persists for numerous mitotic generations. As yeast meiotic development is essentially a starvation response that a/alpha diploid cells engage, we sought to model this phenomenon by subjecting haploid cells to starvation conditions. We find also that haploid cells exposed to glucose withdrawal acquire a state of elevated stress resistance that persists after the reintroduction of these cells to glucose-replete media. Following release from lengthy durations of glucose starvation, we confirm that this physiological state of enhanced stress resistance is propagated in descendants of the exposed cells through two mitotic divisions before fading from the population. In both haploid starved cells and diploid produced meiotic spores we show that their cellular memories are not attributable to trehalose, a widely regarded stress protectant that accumulates in these cell types. Moreover, the transiently heritable stress resistant state induced by glucose starvation in haploid cells is independent of the Msn2/4 transcription factors, which are known to program cellular memory induced by exposure of cells to NaCl. Our findings identify new developmentally and nutritionally induced states of cellular memory that exhibit striking degrees of persistence and mitotic heritability.

20.
Front Microbiol ; 9: 3238, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687253

RESUMEN

Osmotolerance or halotolerance are used to describe resistance to sugars and salt, or only salt, respectively. Here, a comprehensive screen of more than 600 different yeast isolates revealed that osmosensitive species were equally affected by NaCl and glucose. However, the relative toxicity of salt became increasingly prominent in more osmoresistant species. We confirmed that growth inhibition by glucose in a laboratory strain of Saccharomyces cerevisiae occurred at a lower water activity (Aw) than by salt (NaCl), and pre-growth in high levels of glucose or salt gave enhanced cross-resistance to either. Salt toxicity was largely due to osmotic stress but with an additive enhancement due to effects of the relevant cation. Almost all of the yeast isolates from the screen were also noted to exhibit hetero-resistance to both salt and sugar, whereby high concentrations restricted growth to a small minority of cells within the clonal populations. Rare resistant colonies required growth for up to 28 days to become visible. This cell individuality was more marked with salt than sugar, a possible further reflection of the ion toxicity effect. In both cases, heteroresistance in S. cerevisiae was strikingly dependent on the GPD1 gene product, important for glycerol synthesis. In contrast, a tps1Δ deletant impaired for trehalose showed altered MIC but no change in heteroresistance. Effects on heteroresistance were evident in chronic (but not acute) salt or glucose stress, particularly relevant to growth on low Aw foods. The study reports diverse osmotolerance and halotolerance phenotypes and heteroresistance across an extensive panel of yeast isolates, and indicates that Gpd1-dependent glycerol synthesis is a key determinant enabling growth of rare yeast subpopulations at low Aw, brought about by glucose and in particular salt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA