Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Pathol Res Pract ; 263: 155592, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39255671

RESUMEN

Among gynecological malignancies, ovarian cancer (OC) presents the most challenging diagnostic scenario. Despite exhaustive efforts, up to 90 % of patients treated with taxane/platinum-based chemotherapy experience relapse, leading to poor survival rates. Identifying new molecular markers that can characterize disease aggressiveness, chemoresistance, recurrence risk, and metastasis is crucial. This study aimed to assess the susceptibility of three ovarian tumor cell lines (TOV-21G, SKOV-3, and OV-90) to cisplatin and paclitaxel, and to investigate the influence of these treatments on the mRNA expression of TANK, RIPK1, NFKB1, TNFRSF10D, and TRAF2. Among the cell lines, SKOV-3 ovarian adenocarcinoma cells demonstrated the highest resistance to cisplatin treatment (0.125 mg/mL), followed by TOV-21G (0.076 mg/mL) and OV-90 cells (0.028 mg/mL). Regarding paclitaxel treatment, the SKOV-3 cell line exhibited the highest resistance (1.4 µg/mL), followed by OV-90 (1.3 µg/mL) and TOV-21G cells (0.9 µg/mL). Gene expression analysis after paclitaxel treatment remained unchanged; however, after cisplatin treatment, TNFRSF10D was observed to be upregulated nearly 100-fold in SKOV-3 compared to all other cell lines studied. SKOV-3 is described as cisplatin and tumor necrosis factor-resistant. Despite the defective signaling of the TNFRSF10D receptor for apoptosis, it can activate the NFKB transcription factor through non-canonical TRAIL signaling, contributing to a pro-inflammatory immune response. In light of this, damage associated with cisplatin increases TNFRSF10D expression and may promote cell survival through non-canonical NFKB pathway activation. This suggests that resistance to TRAIL-induced apoptosis in these cells could serve as a promising chemoresistance biomarker in OC.

2.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261664

RESUMEN

In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.

3.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273697

RESUMEN

Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective but do not respond optimally in all patients. This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the ARMS2 (rs10490924), IL1B1 (rs1143623), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), VEGFA (rs3024997), ARMS2, IL1B1, TNFRSF1B, TNFRSF1A, and VEGFA serum levels in AMD development and treatment efficacy. This study examined the associations of specific genetic polymorphisms and serum protein levels with exudative and early AMD and the response to anti-VEGF treatment. The AA genotype of VEGFA (rs3024997) was significantly associated with a 20-fold reduction in the odds of exudative AMD compared to the GG + GA genotypes. Conversely, the TT genotype of ARMS2 (rs10490924) was linked to a 4.2-fold increase in the odds of exudative AMD compared to GG + GT genotypes. In females, each T allele of ARMS2 increased the odds by 2.3-fold, while in males, the TT genotype was associated with a 5-fold increase. Lower serum IL1B levels were observed in the exudative AMD group compared to the controls. Early AMD patients had higher serum TNFRSF1B levels than controls, particularly those with the GG genotype of TNFRSF1B rs1061622. Exudative AMD patients with the CC genotype of TNFRSF1A rs4149576 had lower serum TNFRSF1A levels compared to the controls. Visual acuity (VA) analysis showed that non-responders had better baseline VA than responders but experienced decreased VA after treatment, whereas responders showed improvement. Central retinal thickness (CRT) reduced significantly in responders after treatment and was lower in responders compared to non-responders after treatment. The T allele of TNFRSF1B rs1061622 was associated with a better response to anti-VEGF treatment under both dominant and additive genetic models. These findings highlight significant genetic and biochemical markers associated with AMD and treatment response. This study found that the VEGFA rs3024997 AA genotype reduces the odds of exudative AMD, while the ARMS2 rs10490924 TT genotype increases it. Lower serum IL1B levels and variations in TNFRSF1B and TNFRSF1A levels were linked to AMD. The TNFRSF1B rs1061622 T allele was associated with better anti-VEGF treatment response. These markers could potentially guide risk assessment and personalized treatment for AMD.


Asunto(s)
Interleucina-1beta , Degeneración Macular , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Factores de Necrosis Tumoral , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/sangre , Masculino , Femenino , Degeneración Macular/genética , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/sangre , Degeneración Macular/patología , Anciano , Interleucina-1beta/genética , Interleucina-1beta/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Genotipo , Alelos , Proteínas , Receptores Tipo II del Factor de Necrosis Tumoral
4.
Genomics ; 116(5): 110909, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103003

RESUMEN

Transposable elements (TEs) are of interest as immunomodulators for cancer therapies. TEs can fold into dsRNAs that trigger the interferon response. Here, we investigated the effect of different HDAC inhibitors (HDACIs) on the expression of TEs in leiomyosarcoma cells. Our data show that endogenous retroviruses (ERVs), especially ERV1 elements, are upregulated after treatment with HDAC1/2/3-specific inhibitors. Surprisingly, the interferon response was not activated. We observed an increase in A-to-I editing of upregulated ERV1. This could have an impact on the stability of dsRNAs and the activation of the interferon response. We also found that H3K27ac levels are increased in the LTR12 subfamilies, which could be regulatory elements controlling the expression of proapoptotic genes such as TNFRSF10B. In summary, we provide a detailed characterization of TEs modulation in response to HDACIs and suggest the use of HDACIs in combination with ADAR inhibitors to induce cell death and support immunotherapy in cancer.

5.
Heliyon ; 10(15): e35775, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170389

RESUMEN

Aplastic anemia (AA) is an autoimmune hematopoietic disease mediated by autoreactive T cells leading to bone marrow failure. However, the precise role of autoreactive T cells in the development of AA is not fully understood, hindering the advancement of therapeutic and diagnostic strategies. In this study, we conducted a single-cell transcriptome analysis of CD8+ T cells, conventional CD4+ T (CD4+ Tconv) cells, and Treg cells, to elucidate the potential disruption of T cell homeostasis in patients with AA. We identified changes in CD4+ Tconv cells, including loss of homeostasis in naïve and memory cells and increased differentiation potential in T helper type 1 (TH1), T helper type 2 (TH2), and T helper type 17 (TH17) cells. Additionally, we identified naïve and memory CD8+ T cells that were enforced into an effector state. CD127 is an ideal surface marker for assessing the immune state of CD8+ T cells,as identified by flow cytometry. Abnormal expression of TNFSF8 has been observed in AA and other autoimmune diseases. Flow cytometry analysis revealed that TNFRSF8 (CD30), a receptor for TNFSF8, was predominantly present in human Treg cells. Importantly, patients with AA have a decreased CD30+ Treg subset. RNA-sequencing analysis revealed, that the CD30+ Treg cells are characterized by high proliferation and a remarkable immunosuppressive phenotype. Taken, together, we propose that abnormal TNFSF8/TNFRSF8 signaling is involved in dysfunctional T cell immunity by increasing the destruction of CD30+ Treg cells.

6.
Cancer Res Treat ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118523

RESUMEN

Purpose: Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms. Materials and Methods: Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A. Results: TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased NF-κB signaling and significant upregulation of BIRC3, a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer. Conclusion: TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.

7.
Mol Neurobiol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115672

RESUMEN

Plasma proteins are promising biomarkers and potential drug targets for stroke. This study aimed to explore whether there is a causal relationship between plasma proteins and subtypes of stroke using a Mendelian randomization (MR) approach. A two-sample bidirectional Mendelian randomization approach was employed to investigate the causal link between plasma proteins and stroke. Data on plasma proteins were obtained from three studies, including INTERVAL, and pooled stroke information was sourced from the MEGASTROKE consortium and the UK Biobank dataset, covering four subtypes of stroke. MR analyses were primarily conducted using inverse variance weighting, and sensitivity analyses were also performed. Finally, potential reverse causality was assessed using bidirectional MR. We identified two proteins causally associated with stroke: one as a potential therapeutic target and another as a protective factor. CXCL8 was found to be positively associated with the risk of developing large-artery atherosclerotic (LAA) stroke (OR, 1.005; 95% CI 1.001 to 1.010; p = 0.022), whereas TNFRSF11b was negatively correlated with the risk of developing LAA stroke (OR, 0.937; 95% CI 0.892 to 0.984; p = 0.010), independently of other stroke subtypes. Reverse bivariate analysis did not indicate that ischemic stroke was causally associated with CXCL8 and TNFRSF11b. There is a causal relationship between CXCL8 and TNFRSF11b with LAA stroke, independent of other subtypes. This study offers a new perspective on the genetics of stroke.

8.
Allergy Asthma Immunol Res ; 16(4): 399-421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39155739

RESUMEN

PURPOSE: Asthma, an airway inflammatory disease, involves multiple tumor necrosis factors (TNF). TNF ligand superfamily member 11 (TNFSF11) and its known receptor, TNF receptor superfamily 11A (TNFRSF11A), has been implicated in asthma; however, the related mechanisms remain unknown. METHODS: The serum and bronchial airway of patients with asthma and healthy subjects were examined. The air-liquid interface of primary human bronchial epithelial (HBE) cells, and Tnfsf11+/- mouse, Tnfrsf11a+/- mouse, and a humanized HSC-NOG-EXL mouse model were established. This study constructed short hairpin RNA (shRNA) of TNFSF11, TNFRSF11A, transforming growth factor ß1 (TGFß1), and transforming growth factor ß receptor type 1 (TGFßR1) using lentivirus to further examine the ability of TNFSF11 protein. RESULTS: This study was the first to uncover TNFSF11 overexpression in the airway and serum of asthmatic human subjects, and the TNFSF11 in serum was closely correlated with lung function. The TNFSF11/TNFRSF11A axis deficiency in Tnfsf11+/- or Tnfrsf11a+/- mice remarkably attenuated the house dust mite (HDM)-induced signal transducer and activator of transcription 3 (STAT3) action and remodeling protein expression. Similarly, the HDM-induced STAT3 action and remodeling protein expression in HBE cells decreased after pretreatment with TNFSF11 or TNFRSF11A shRNA. Meanwhile, the expression of the remodeling proteins induced by TNFSF11 significantly decreased after pretreatment with-stattic (inhibitor of STAT3 phosphorylation) in HBE cells. The STAT3 phosphorylation and remodeling protein expression induced by TNFSF11 obviously decreased after pretreatment with TGFß1 or TGFßR1 shRNA in HBE cells. The above results also verified that blocking TNFSF11 with denosumab alleviated airway remodeling via the TGFß1/STAT3 signaling in the humanized HSC-NOG-EXL mice with HDM-induced asthma. CONCLUSIONS: TGFß1/STAT3 action was closely correlated with TNFSF11/TNFRSF11A axis-mediated airway remodeling. This study presented a novel strategy that blocks the TNFSF11/TNFRSF11A axis to exert a protective effect against asthma.

9.
Oncoimmunology ; 13(1): 2388304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135889

RESUMEN

The Hodgkin and Reed - Sternberg (HRS) cells in classical Hodgkin Lymphoma (cHL) actively modify the immune tumor microenvironment (TME) attracting immunosuppressive cells and expressing inhibitory molecules. A high frequency of myeloid cells in the TME is correlated with an unfavorable prognosis, but more specific and rare cell populations lack precise markers. Myeloid-derived suppressor cells (MDSCs) have been identified in the peripheral blood of cHL patients, where they appear to be correlated with disease aggressiveness. TNFRSF9 (CD137) is a T cell co-stimulator expressed by monocytic and dendritic cells. Its expression has also been described in HRS cells, where it is thought to play a role in reducing antitumor responses. Here, we perform qualitative and quantitative analyses of lymphocytic and MDSC subtypes and determine the CD137 cell distribution in cHL primary tumors using multiplex immunofluorescence and automated multispectral imaging. The results were correlated with patients' clinical features. Cells were stained with specific panels of immune checkpoint markers (PD-1, PD-L1, CD137), tumor-infiltrating T lymphocytes (CD3, PD-1), and monocytic cells/MDSCs (CD68, CD14, CD33, Arg-1, CD11b). This approach allowed us to identify distinct phenotypes and to analyze spatial interactions between immune subpopulations and tumor cells. The results confirm CD137 expression by T, monocytic and HRS cells. In addition, the expression of CD137, T exhausted cells, and monocytic MDSCs (m-MDSCs) in the vicinity of malignant HRS cells were associated with a worse prognosis. Our findings reveal new elements of the TME that mediate immune escape, and confirm CD137 as a candidate target for immunotherapy in cHL.


CD137-expressing immune cells and HRS cells are more abundant and in closer proximity in refractory patients than in responders.Monocytic myeloid-derived suppressor cells (m-MDSCs) are associated with unfavorable outcomes and relapse in cHL, unlike granulocytic MDSCs (g-MDSCs), which are located far from HRS cells in non-responders.The cHL tumor microenvironment promotes immune escape in refractory patients by holistically driving polarization and/or recruitment of several cell types with increased expression of CD137 and PD-L1 checkpoints.


Asunto(s)
Enfermedad de Hodgkin , Células Supresoras de Origen Mieloide , Células de Reed-Sternberg , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Humanos , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Células de Reed-Sternberg/patología , Células de Reed-Sternberg/metabolismo , Anciano , Análisis Espacial , Adulto Joven , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Adolescente , Pronóstico , Biomarcadores de Tumor/metabolismo
10.
J Transl Med ; 22(1): 698, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075394

RESUMEN

BACKGROUND: Severe COVID-19 infection has been associated with the development of pulmonary fibrosis, a condition that significantly affects patient prognosis. Understanding the underlying cellular communication mechanisms contributing to this fibrotic process is crucial. OBJECTIVE: In this study, we aimed to investigate the role of the TNFSF12-TNFRSF12A pathway in mediating communication between alveolar macrophages and fibroblasts, and its implications for the development of pulmonary fibrosis in severe COVID-19 patients. METHODS: We conducted single-cell RNA sequencing (scRNA-seq) analysis using lung tissue samples from severe COVID-19 patients and healthy controls. The data was processed, analyzed, and cell types were annotated. We focused on the communication between alveolar macrophages and fibroblasts and identified key signaling pathways. In vitro experiments were performed to validate our findings, including the impact of TNFRSF12A silencing on fibrosis reversal. RESULTS: Our analysis revealed that in severe COVID-19 patients, alveolar macrophages communicate with fibroblasts primarily through the TNFSF12-TNFRSF12A pathway. This communication pathway promotes fibroblast proliferation and expression of fibrotic factors. Importantly, silencing TNFRSF12A effectively reversed the pro-proliferative and pro-fibrotic effects of alveolar macrophages. CONCLUSION: The TNFSF12-TNFRSF12A pathway plays a central role in alveolar macrophage-fibroblast communication and contributes to pulmonary fibrosis in severe COVID-19 patients. Silencing TNFRSF12A represents a potential therapeutic strategy for mitigating fibrosis in severe COVID-19 lung disease.


Asunto(s)
COVID-19 , Fibroblastos , Macrófagos Alveolares , Fibrosis Pulmonar , Transducción de Señal , Receptor de TWEAK , Humanos , COVID-19/complicaciones , COVID-19/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/complicaciones , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Citocina TWEAK/metabolismo , Comunicación Celular , Masculino , SARS-CoV-2 , Femenino , Persona de Mediana Edad , Proliferación Celular , Pulmón/patología , Índice de Severidad de la Enfermedad
11.
J Exp Clin Cancer Res ; 43(1): 212, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085878

RESUMEN

BACKGROUND: Prolonged interferon-γ signaling activation induces cancer resistance to therapeutics, especially immunotherapy. However, the detailed mechanisms are not well characterized. In present study, we explored cancer intrinsic resistant mechanisms employing for evading immune checkpoint blockade (ICB) and searched for key immune checkpoints contributing to the constitution of suppressive immune microenvironment of glioblastoma (GBM). METHODS: We screened key immune checkpoint (IC) associated with IFN signaling activation in GBM according to integrated transcriptomic profiling on the ICs. Expression analysis and functional assays revealed that malignant cells elevated the key IC, TNFRSF14 expression under IFN-γ stimulation, which enhanced their proliferation and in vivo tumorigenicity. Therapeutic efficiency of TNFRSF14 disruption in GBM was evaluated with in vitro and in vivo functional assays, including immunofluorescence, transwell, RT-qPCR, flow cytometry, mass cytometry, and mice preclinical GBM models. Moreover, the improvement of TNFRSF14 blockade on the efficacy of PD-L1 treatment was examined in mice intracranial xenograft bearing models. RESULTS: TNFRSF14, a previously poorly characterized IC, was disclosed as a checkpoint with malignant intrinsic elevation closely associated with type II not type I IFN signaling activation in GBM. Anti-PD-L1 treatment induces compensatory TNFRSF14 elevation, while enhancing IFN-γ production. TNFRSF14 phosphorylates FAK at Y397 and consequently activates NF-κB, which not only strengthens the tumorigenicity of GBM cells, but also enhances TAMs recruitment through elevating CXCL1/CXCL5 secretion from GBM cells. TNFRSF14 ablation reduces the tumorigenicity of GBM cells, reshapes the immunosuppressive microenvironment, and enhances therapeutic efficacy of anti-PD-L1 in mouse orthotopic GBM model. CONCLUSION: Our findings highlight a malignant TNFRSF14/FAK axis as a potential target to blunt cancer-intrinsic resistance to ICB treatment, which may help improve the therapeutic efficiency of immunotherapy in malignancies.


Asunto(s)
Glioblastoma , Interferón gamma , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Humanos , Animales , Ratones , Interferón gamma/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Progresión de la Enfermedad , Línea Celular Tumoral , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Transducción de Señal
12.
Semin Arthritis Rheum ; 68: 152505, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39003954

RESUMEN

BACKGROUND: Limited evidence suggests that variants in TNFRSF11A gene, encoding RANK, may contribute to systemic autoinflammatory disease (SAID). AIM/METHODS: To estimate the prevalence of TNFRSF11A variants in a cohort of patients with SAIDs screened for 26 related genes and describe the disease phenotypic expression. RESULTS: A total of 12 out of 167 patients, 7 males, aged (median) 38 years at disease onset, yielded at least one TNFRSF11A rare variant. All patients carried a coexisting variant in at least one other SAID-related gene, most frequently MEFV (6 patients), but also TNFRSF1A, NOD2, NLRP3, NLRP7, MVK, IL36RN, RBCK1, PLCG2 and PSMB8. SAID episodes lasting (median) 9 days manifested with high grade fever (91%), myalgias (75%), malaise (67%), serositis (58%), arthralgias/arthritis (58%), gastrointestinal involvement (33%), and rash (25%), and responded to corticosteroids. The most common initial clinical diagnosis was TNF-associated periodic fever syndrome (TRAPS), which was, however, confirmed, in only one patient. The emergence of MEFV variations supported the diagnosis of atypical Familial Mediterranean Fever in two cases, whereas the diagnosis of Yao syndrome was speculated in two patients with NOD2 variants. The presence of atypical disease and the inability of defining diagnosis in the remaining 7 patients, supported the possible involvement of TNFRSF11A variants in the phenotypic expression of SAIDs. CONCLUSION: TNFRSF11A variants, occurring in 7% of SAID patients always in combination with other SAID-related gene variants, contribute to the development of an autoinflammatory syndrome resembling to TRAPS. Additional studies to confirm novel pathogenic SAID pathways are clearly warranted.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Humanos , Masculino , Femenino , Adulto , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Persona de Mediana Edad , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Adulto Joven , Adolescente , Fenotipo , Proteína Adaptadora de Señalización NOD2/genética , Pirina/genética , Anciano , Mutación , Predisposición Genética a la Enfermedad
13.
Biochem Pharmacol ; 227: 116439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032532

RESUMEN

Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Animales , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción de Señal/fisiología , Dominios Proteicos
14.
Indian J Hematol Blood Transfus ; 40(3): 494-503, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011244

RESUMEN

Osteopetrosis is a clinically and genetically heterogeneous group of inherited bone disorders that is caused by defects in osteoclast formation or function. Treatment options vary with the disease severity and an accurate molecular diagnosis helps in prognostication and treatment decisions. We investigated the genetic causes of osteopetrosis in 31 unrelated patients of Indian origin. Screening for the genetic variants was done by Sanger sequencing or next generation sequencing in 48 samples that included 31 samples from index patients, 16 from parents' and 1 chorionic villus sample. A total of 30 variants, including 29 unique variants, were identified in 26 of the 31 patients in the study. TCIRG1 was the most involved gene (n = 14) followed by TNFRSF11A (n = 4) and CLCN7 (n = 3). A total of 17 novel variants were identified. Prenatal diagnosis was done in one family and the foetus showed homozygous c.807 + 2T > G variant in TCIRG1. Molecular diagnosis of osteopetrosis aids in therapeutic decisions including the need for a stem cell transplantation and gives a possible option of performing prenatal diagnosis in affected families. Further studies would help in understanding the genetic etiology in patients where no variants were identified. Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-023-01732-4.

16.
Front Genet ; 15: 1413641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978873

RESUMEN

Background: Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is a rare autosomal dominant disorder with a low incidence in Asia. The most frequent clinical manifestations include fever, rash, myalgia, joint pain and abdominal pain. Misdiagnosis rates are high because of the clinical and genetic variability of the disease. The pathogenesis of TRAPS is complex and yet to be fully defined. Early genetic diagnosis is the key to precise treatment. Methods: In this study, a Chinese family with suspected TRAPS were analyzed by genome-wide SNP genotyping, linkage analysis and targeted sequencing for identification of mutations in causative genes. To study the pathogenicity of the identified gene mutation, we performed a conservation analysis of the mutation site and protein structure analysis. Flow cytometry was used to detect TNFRSF1A shedding and quantitative real-time PCR were used to assess the activation of unfolded protein response (UPR) in the mutation carriers and healthy individuals. Results: A typical TRAPS family history, with a pattern of autosomal dominant inheritance, led to the identification of a rare mutation in the TNFRSF1A gene (c.G374A [p.Cys125Tyr]) with unknown significance. The patient responded well to corticosteroids, and long-term therapy with colchicine effectively reduced the inflammatory attacks. No amyloid complications occurred during the 6-year follow-up. In silico protein analysis showed that the mutation site is highly conversed and the mutation prevents the formation of intrachain disulfide bonds in the protein. Despite a normal shedding of the TNFRSF1A protein from stimulated monocytes in the TRAPS patients with p.C125Y mutation, the expression of CHOP and the splicing of XBP1 was significantly higher than healthy controls, suggesting the presence of an activation UPR. Conclusion: This is the first report of a Chinese family with the rare p.C125Y mutation in TNFRSF1A. The p.C125Y mutation does not result in aberrant receptor shedding, but instead is associated with an activated UPR in these TRAPS patients, which may provide new insights into the pathogenesis of this rare mutation in TRAPS.

17.
Clin Transl Oncol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967737

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most common malignant tumor in China. The expression and cell surface levels of TNF receptor superfamily member 10B (TNFRSF10B) are associated with apoptosis and chemotherapy. However, the precise molecular mechanisms that govern the regulation of TNFRSF10B remain unclear. MATERIALS AND METHODS: RNA-Seq data related to TNBC chemotherapy resistance were acquired from the GEO database. The mRNA and protein levels of TNFRSF10B were detected using RT-PCR and Western blotting, respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect cell proliferation. Annexin V/7-AAD staining was used to evaluate apoptosis. The cell membrane TNFRSF10B was analyzed by Western blotting and immunofluorescence. Inducers and inhibitors of endoplasmic reticulum stress (ERS) were used to assess the effect of ERS on TNFRSF10B localization. RESULTS: TNFRSF10B expression was downregulated in TNBC and was associated with prognosis. TNFRSF10B overexpression inhibits the growth of TNBC both in vivo and in vitro and can partially counteract chemotherapy resistance. ERS activation in TNBC promotes the expression of TNFRSF10B, leading to its enrichment on the cell membrane surface, thereby activating the apoptotic pathways. CONCLUSION: ERS regulates the expression and subcellular localization of TNFRSF10B in TNBC cells. They synergistically affect anti-apoptosis and chemotherapy resistance in TNBC cells.

18.
Transl Oncol ; 47: 102047, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972174

RESUMEN

Osteosarcoma, one of the most common primary malignancies in children and adolescents, has the primary characteristics of a poor prognosis and high rate of metastasis. This study used super-enhancer-related genes derived from two different cell lines to construct five novel super-enhancer-related gene prognostic models for patients with osteosarcoma. The training and testing datasets were used to confirm the prognostic models of the five super-enhancer-related genes, which resulted in an impartial predictive element for osteosarcoma. The immunotherapy and prediction of the response to anticancer drugs have shown that the risk signature of the five super-enhancer-related genes positively correlate with chemosensitivity. Furthermore, functional analysis of the risk signature genes revealed a significant relationship between gene groups and the malignant characteristics of tumours. TNF Receptor Superfamily Member 11b (TNFRSF11B) was selected for functional verification. Silencing of TNFRSF11B suppressed the proliferation, migration, and invasion of osteosarcoma cells in vitro and suppressed osteosarcoma growth in vivo. Moreover, transcriptome sequencing was performed on MG-63 cells to study the regulatory mechanism of TNFRSF11B in osteosarcoma cells, and it was discovered that TNFRSF11B is involved in the development of osteosarcoma via the phosphoinositide 3-kinase signalling pathway. Following the identification of TNFRSF11B as a key gene, we selected an inhibitor that specifically targeted this gene and performed molecular docking simulations. In addition, risedronic acid inhibited osteosarcoma growth at both cellular and molecular levels. In conclusion, the super-enhancer-related gene signature is a viable therapeutic tool for osteosarcoma prognosis and treatment.

19.
Oncol Lett ; 28(3): 425, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39021735

RESUMEN

During the progression of renal cell carcinoma (RCC), tumor growth, metastasis and treatment response heterogeneity are regulated by both the tumor itself and the tumor microenvironment (TME). The aim of the present study was to investigate the role of the TME in RCC and construct a crosstalk network for clear cell RCC (ccRCC). An additional aim was to evaluate whether TNF receptor superfamily member 1A (TNFRSF1A) is a potential therapeutic target for ccRCC. Single-cell data analysis of RCC was performed using the GSE152938 dataset, focusing on key cellular components and their involvement in the ccRCC TME. Additionally, cell-cell communication was analyzed to elucidate the complex network of the ccRCC microenvironment. Analyses of data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases were performed to further mine the key TNF receptor genes, with a particular focus on the prediction and assessment of the cancer-associated features of TNFRSF1A. In addition, following the silencing of TNFRSF1A using small interfering RNA in the 786-O ccRCC cell line, a number of in vitro experiments were conducted to further investigate the cancer-promoting characteristics of TNFRSF1A. These included 5-ethynyl-2'-deoxyuridine incorporation, Cell Counting Kit-8, colony formation, Transwell, cell cycle and apoptosis assays. The TNF signaling pathway was found to have a critical role in the development of ccRCC. Based on the specific crosstalk identified between TNF and TNFRSF1A, the communication of this signaling pathway within the TME was elucidated. The results of the cellular phenotype experiments indicated that TNFRSF1A promotes the proliferation, migration and invasion of ccRCC cells. Consequently, it is proposed that targeting TNFRSF1A may disrupt tumor progression and serve as a therapeutic strategy. In conclusion, by understanding the TME and identifying significant crosstalk within the TNF signaling pathway, the potential of TNFRSF1A as a therapeutic target is highlighted. This may facilitate an advance in precision medicine and improve the prognosis for patients with RCC.

20.
Biomedicines ; 12(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927435

RESUMEN

We aimed to study the impact of polymorphisms in the genes encoding interleukin-6 (IL6) and tumor necrosis factor receptor-2 (TNFR2), reported to be mortality risk predictors, in patients with end-stage kidney disease (ESKD) undergoing dialysis. TNFRSF1B (rs3397, rs1061624, and rs1061622) and IL6 (rs1800796, rs1800797, and rs1554606) polymorphisms were studied in patients with ESKD and controls; the genotype and allele frequencies and the associations with inflammatory and erythropoiesis markers were determined; deaths were recorded throughout the following two years. The genotype and allele frequencies for the TNFRSF1B rs3397 polymorphism were different in these patients compared to those in the controls and the global and European populations, and patients with the C allele were less common. Patients with the CC genotype for TNFRSF1B rs3397 presented higher hemoglobin and erythrocyte counts and lower TNF-α levels, suggesting a more favorable inflammatory response that seems to be associated with erythropoiesis improvement. Patients with the GG genotype for TNFRSF1B rs1061622 showed lower serum ferritin levels. None of the TNFRSF1B (rs3397, rs1061624, and rs1061622) or IL6 (rs1800796, rs1800797, and rs1554606) polymorphisms had a significant impact on the all-cause mortality rate of Portuguese patients with ESKD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA