Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(3): e14178, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923902

RESUMEN

The use of Saccharomyces cerevisiae (SC) feed additives to improve animal performance are on the increase; however, the results of the action of SC supplementation on goats performance indices are conflicting. Thus, the thrust of this meta-analysis was to examine the influence of dietary SC intervention on the growth performance, haemato-biochemical indices and ruminal fermentation characteristics of growing goats fed total mixed ration (TMR). The search conducted in Google Scholar, PubMed and Scopus databases using several keywords yielded 500 studies of which 16 full-text articles were utilised for study. Response variables were aggregated via a random-effects model. The results showed that goats fed SC experienced higher average daily gain (ADG) than the controls (as standardized mean difference, SMD = 2.14; 95% confidence interval, CI: 1.40 to 2.89). In converse, dietary SC intervention had a small impact on dry matter intake (DMI) and feed conversion ratio (FCR). Subgroup analysis demonstrated that SC type (active vs inactive) improved FCR and ADG in growing goats. Results suggested that SC preparation increased blood glucose, white blood cell (WBC), ruminal propionate and total volatile fatty acid levels. There is heterogeneity among the articles used in the study, and aspects of studied covariates explained the variation. In conclusion, this study indicated that dietary yeast can positively influence growth performance, haemato-biochemical indices, and rumen fermentation parameters of growing goats.

2.
Vet Anim Sci ; 14: 100222, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917853

RESUMEN

High-yield dairy cows need high energy feed during periods of increased milk production. The transitional feeding to high energy feed increases the risk of developing a variety of metabolic disorders. Here, five Holstein cows were fed a four-stage feeding protocol (3 weeks for each stage) ranging from 54.9 to 73.7% total digestive nutrients (TDN). The purpose of the study was to investigate the effect of lactic acid bacteria on high-energy-fed cows associated with transitional feeding, and to evaluate the effects of probiotics on intestinal bacterial changes and inflammatory responses. Three feed transition periods were established for five cows, and Lactobacillus plantarum RGU-LP1 (LP1) was fed as a probiotic during the high-energy feeding period. The number of lymphocyte subsets such as CD3-, CD4-, and CD8 positive cells decreased in response to the high energy feed. Lipopolysaccharide (LPS)-induced cytokine (IL-1ß and IL-2) gene expression in peripheral blood mononuclear cells (PBMCs) was shown to increase in those animals receiving the high energy feed. However, supplementation with LP1 resulted in an increase in the number of lymphocyte subsets and the expression of IL-1ß and IL-2 were returned to the level at low energy diet. These results suggest that high energy diets induce inflammatory cytokine responses following LPS stimulation, and that the addition of LP1 mitigates these results by regulating the LPS-induced inflammatory reaction. Therefore, the functional lactic acid bacteria LP1 is expected to regulate inflammation resulting from high energy feeding, and this probiotic could be applied to support inflammatory regulation in high-yield dairy cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA