Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 249: 126048, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37517756

RESUMEN

Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKß. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.


Asunto(s)
Lubina , Receptor Toll-Like 5 , Animales , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , FN-kappa B/metabolismo , Flagelina/farmacología , Transducción de Señal , Quinasa I-kappa B/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-34637922

RESUMEN

Toll like receptor 5 (TLR5) plays a crucial role in the innate immune response by recognizing bacterial flagellin proteins. In the present study, the genomic and 5'-flanking sequences of LcTLR5M (membrane) and LcTLR5S (soluble) were cloned from the large yellow croaker, Larimichthys crocea. Then, their promoter activities were determined in human embryonic kidney (HEK293T) cells. LcTLR5M contained 4 exons and 3 introns, and LcTLR5S contained 2 exons and 1 intron. Bioinformatic prediction of transcription factor binding sites (TFBSs) indicated that the promoter structures were different between LcTLR5M and LcTLR5S. A dual luciferase assay showed that the deletion mutant -471 to +189 of LcTLR5M promoter possessed the greatest activity with 36 times activity of the control (P < 0.05). For LcTLR5S, two deletion mutants, -1687 to +106 and - 720 to +106, showed high promoter activity. Furthermore, site-directed mutation demonstrated that a -392 to -391 AT/GG substitution in Oct-1 binding site, and a -104 to -103 GG/TT and a -98 to -97 CC/AA substitution in the NF-κB binding site of TLR5S caused a significant decline of luciferase activity (P < 0.05). Moreover, the co-transfection of an NF-κB/p65 over-expression plasmid with wild type TLR5S (-720 to +106) resulted in an extremely significant increase of promoter activity by more than 9 times compared with the NF-kB mutant (P < 0.01). Our findings suggest that the genomic organization and promoter structure may differ between LcTLR5M and LcTLR5S. Oct1 and NF-κB binding sites might be cis-regulatory elements in the LcTLR5S promoter. NF-κB/p65 plays an important role in LcTLR5S promoter activation through binding with the NF-κB binding site.


Asunto(s)
FN-kappa B , Perciformes , Animales , Sitios de Unión , Proteínas de Peces/genética , Células HEK293 , Humanos , Inmunidad Innata , FN-kappa B/genética , FN-kappa B/metabolismo , Perciformes/genética , Perciformes/metabolismo
3.
Fish Shellfish Immunol ; 87: 765-771, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30776541

RESUMEN

Flagellin is the subunit protein that composes bacterial flagella and is recognized by toll-like receptor 5 (TLR5) as a ligand. Flagellin protein (e.g., FliC and FlaA) contains the D1, D2, and D3 domains; the D1 domain is important for recognition by TLR5 for activation of the innate immune system. In teleosts, there are two types of TLR5, the membrane form (TLR5M) and soluble form (TLR5S), the latter of which is not present in mammals. In this study, the potential of flagellin from Edwardsiella tarda (EtFliC) to induce inflammation-related genes interleukin (IL)-1ß and NF-κB-p65 through TLR5S in Japanese flounder (Paralichthys olivaceus) was elucidated. A transient overexpression system was developed in flounder natural embryonic (HINAE) cells using constructs encoding two flagellin genes derived from E. tarda (pEtFliC) and Escherichia coli (pEcoFliC) and the flounder TLR5S gene (pPoTLR5S). Expression of inflammation-related genes in EtFliC- and PoTLR5S-overexpressing HINAE cells was significantly lower than in EcoFliC- and PoTLR5S-overexpressing cells. To clarify the difference between EtFliC and EcoFliC potency, the amino acid sequence of EtFliC was compared with that of other bacterial flagellin. The 91st arginine residue, known as the mammalian TLR5 activation site, was conserved in the flagellin of E. coli and other bacteria but not in EtFliC. To reveal the importance of the 91st arginine residue in FliC, a pEtFliC construct in which the 91st asparagine was mutated to arginine (pEtFliC_N91R) was generated. Expression of the IL-1ß and NF-κB-p65 genes in the HINAE cells co-transfected with pEtFliC_N91R and pPoTLR5S was significantly higher than that in cells co-transfected with pEtFliC and pPoTLR5S. The results suggested that the 91st arginine residue of bacterial flagellin is involved in inflammatory response through TLR5S in teleosts. Thus, EtFliC improved by site-directed mutagenesis could be an effective adjuvant against E. tarda infection in Japanese flounder.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lenguado/genética , Lenguado/inmunología , Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Edwardsiella tarda/fisiología , Escherichia coli , Proteínas de Peces/química , Flagelina/genética , Perfilación de la Expresión Génica/veterinaria , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Filogenia , Alineación de Secuencia/veterinaria , Receptor Toll-Like 5/química , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología
4.
Fish Shellfish Immunol ; 80: 109-114, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29857132

RESUMEN

Toll-like receptors (TLRs) play the key role in host defense of invasion of pathogens, not only in the innate immunity, but also in adaptive immunity. There are significant varieties and distinct features in fish TLRs, the TLR5 subfamily have two members (TLR5M and TLR5S). However, the exact role of TLR5 was lack of research in fish. In this study, a soluble form of TLR5 (TLR5S) was identified in miiuy croaker. The bioinformatics analysis showed that miiuy croaker TLR5S lacked the transmembrane domain and TIR domain. In other words, mmiTLR5S only has leucine-rich repeats (LRRs) domain, it is one of differences between TLR5M and TLR5S. Comparative genomic analysis showed that TLR5S might have happened an evolution between species. Expression analysis showed that mmiTLR5S was expressed in all tested miiuy croaker tissues and the mmiTLR5S expressions were significantly upregulated at 12 h in liver and kidney after Vibrio harveyi infection. Further functional experiments showed that NF-кB can be actived by mmiTLR5S, TLR5S might be an indispensable role in organism immune response. In short, the study of mmiTLR5S enriches the information of TLR5S and lays the foundation for future research on teleost TLRs system.


Asunto(s)
Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perciformes/genética , Perciformes/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Evolución Molecular , Enfermedades de los Peces , Genómica , Células HEK293 , Humanos , Riñón/inmunología , Hígado/inmunología , Sistemas de Lectura Abierta , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Vibrio , Vibriosis/veterinaria
5.
Fish Shellfish Immunol ; 63: 97-102, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28159696

RESUMEN

Toll-like receptor 5 (TLR5) is an important receptor that interacts with bacterial flagellin and regulates host immune response in mammal. Recent studies demonstrate that piscine contains two types of TLR5, namely membrane form of TLR5 (TLR5M) and soluble form of TLR5 (TLR5S), and both of which perform crucial role in flagellin response. In the present study, a TLR5M and a TLR5S sequence was cloned from orange-spotted grouper (Epinepheluscoioides), and their ORFs are respectively 2466 bp (821 aas) and 1935 bp (644 aas). EcTLR5M has the typical TLR structure of a LRR domain, a transmembrane region and a TIR domain, while EcTLR5S only contains a LRR domain like other species' TLR5S. Both molecules have 23 LRR motifs, a LRR-NT and a LRR-CT in the LRR domain, similar to those of other species. Phylogenetic and sequence alignment indicated that both EcTLR5s respectively displayed closer relationship and higher sequence identity with those in other fish species. In healthy grouper, EcTLR5M was highly expressed in the skin, head kidney and spleen, while EcTLR5S was mainly detected in the liver. Ciliate Cryptocaryon irritans infection could significantly up-regulate the expression level of EcTLR5s in the gill and spleen from day 1 to day 3, and higher expression fold change was observed in the spleen. Taken together, the present studies contributed to understanding the function of piscine TLR5M/S and clarify their possible role in fish immune response against ciliate infection.


Asunto(s)
Lubina/genética , Lubina/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Receptor Toll-Like 5/genética , Animales , Lubina/clasificación , Cilióforos/inmunología , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/veterinaria , ADN Complementario/genética , ADN Complementario/metabolismo , Etiquetas de Secuencia Expresada , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN/veterinaria , Receptor Toll-Like 5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA