Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 109065, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39186852

RESUMEN

Histidine biosynthesis is essential for the growth and development of plants, where it occurs within chloroplasts. The eleven reactions are catalyzed by eight enzymes, known as HISN1-8, each acting sequentially. Here, we present the crystal structures of a 5'-ProFAR isomerase (HISN3) from the model legume Medicago truncatula bound to its enzymatically synthesized substrate (ProFAR) and product (PrFAR). The active site of MtHISN3 contains a sodium cation that participates in ligand recognition, a feature not observed in bacterial and fungal structures of homologous enzymes. The steady-state kinetics of wild-type MtHISN3 revealed a slightly higher turnover rate compared to its bacterial homologs. Plant HISN3 sequences contain an unusually elongated Lys60-Ser91 fragment, while deletion of the 74-80 region resulted in a 30-fold loss in catalytic efficiency compared to the wild-type. Molecular dynamics simulations suggested that the fragment facilitates product release, thereby contributing to a higher kcat. Moreover, conservation analyses suggested a non-cyanobacterial origin for plant HISN3 enzymes, which is another instance of a non-cyanobacterial enzyme in the plant histidine biosynthetic pathway. Finally, a virtual screening campaign yielded five molecules, with the energy gains ranging between -13.6 and -13.1 kcal/mol, which provide new scaffolds for the future development of herbicides.


Asunto(s)
Isomerasas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Cinética , Isomerasas/metabolismo , Isomerasas/genética , Isomerasas/química , Medicago truncatula/enzimología , Medicago truncatula/genética , Histidina/metabolismo , Secuencia de Aminoácidos , Evolución Molecular , Simulación de Dinámica Molecular , Dominio Catalítico
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126103

RESUMEN

The formation and analysis of amyloid fibers by two ß-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (ß/α)8 TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a ß-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a ß-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation.


Asunto(s)
Amiloide , Amiloide/química , Amiloide/metabolismo , Concentración de Iones de Hidrógeno , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Dicroismo Circular , Temperatura , Estructura Secundaria de Proteína , Pliegue de Proteína
3.
Biomolecules ; 14(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38540745

RESUMEN

Enzymes of the carbohydrate esterase family 4 (CE4) deacetylate a broad range of substrates, including linear, branched and mesh-like polysaccharides. Although they are enzymes of variable amino acid sequence length, they all comprise the conserved catalytic domain NodB. NodB carries the metal binding and active site residues and is characterized by a set of conserved sequence motifs, which are linked to the deacetylation activity. Besides a non-structured, flexible peptide of variable length that precedes NodB, several members of the CE4 family contain additional domains whose function or contribution to substrate specificity are not efficiently characterized. Evidence suggests that CE4 family members comprising solely the NodB domain have developed features linked to a variety of substrate specificities. To understand the NodB-based substrate diversity within the CE4 family, we perform a comparative analysis of all NodB domains structurally characterized so far. We show that amino acid sequence variations, topology diversities and excursions away from the framework structure give rise to different NodB domain classes associated with different substrate specificities and particular functions within and beyond the CE4 family. Our work reveals a link between specific NodB domain characteristics and substrate recognition. Thus, the details of the fold are clarified, and the structural basis of its variations is deciphered and associated with function. The conclusions of this work are also used to make predictions and propose specific functions for biochemically/enzymatically uncharacterized NodB-containing proteins, which have generally been considered as putative CE4 deacetylases. We show that some of them probably belong to different enzymatic families.


Asunto(s)
Carbohidratos , Esterasas , Humanos , Esterasas/metabolismo , Carbohidratos/química , Secuencia de Aminoácidos , Polisacáridos , Dominio Catalítico , Especificidad por Sustrato
4.
Protein Sci ; 33(3): e4926, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38380781

RESUMEN

Over the past decades, the TIM-barrel fold has served as a model system for the exploration of how changes in protein sequences affect their structural, stability, and functional characteristics, and moreover, how this information can be leveraged to design proteins from the ground up. After numerous attempts to design de novo proteins with this specific fold, sTIM11 was the first validated de novo design of an idealized four-fold symmetric TIM barrel. Subsequent efforts to enhance the stability of this initial design resulted in the development of DeNovoTIMs, a family of de novo TIM barrels with various stabilizing mutations. In this study, we present an investigation into the biophysical and thermodynamic effects upon introducing a varying number of stabilizing mutations per quarter along the sequence of a four-fold symmetric TIM barrel. We compared the base design DeNovoTIM0 without any stabilizing mutations with variants containing mutations in one, two, three, and all four quarters-designated TIM1q, TIM2q, TIM3q, and DeNovoTIM6, respectively. This analysis revealed a stepwise and nonlinear change in the thermodynamic properties that correlated with the number of mutated quarters, suggesting positive nonadditive effects. To shed light on the significance of the location of stabilized quarters, we engineered two variants of TIM2q which contain the same number of mutations but positioned in different quarter locations. Characterization of these TIM2q variants revealed that the mutations exhibit varying effects on the overall protein stability, contingent upon the specific region in which they are introduced. These findings emphasize that the amount and location of stabilized interfaces among the four quarters play a crucial role in shaping the conformational stability of these four-fold symmetric TIM barrels. Analysis of de novo proteins, as described in this study, enhances our understanding of how sequence variations can finely modulate stability in both naturally occurring and computationally designed proteins.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Secuencia de Aminoácidos , Estabilidad Proteica , Termodinámica , Mutación
5.
World J Microbiol Biotechnol ; 39(12): 339, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821748

RESUMEN

The capacity of Pseudomonas aeruginosa to assimilate nutrients is essential for niche colonization and contributes to its pathogenicity. Isocitrate lyase (ICL), the first enzyme of the glyoxylate cycle, redirects isocitrate from the tricarboxylic acid cycle to render glyoxylate and succinate. P. aeruginosa ICL (PaICL) is regarded as a virulence factor due to its role in carbon assimilation during infection. The AceA/ICL protein family shares the catalytic domain I, triosephosphate isomerase barrel (TIM-barrel). The carboxyl terminus of domain I is essential for Escherichia coli ICL (EcICL) of subfamily 1. PaICL, which belongs to subfamily 3, has domain II inserted at the periphery of domain I, which is believed to participate in enzyme oligomerization. In addition, PaICL has the α13-loop-α14 (extended motif), which protrudes from the enzyme core, being of unknown function. This study investigates the role of domain II, the extended motif, and the carboxyl-terminus (C-ICL) and amino-terminus (N-ICL) regions in the function of the PaICL enzyme, also as their involvement in the virulence of P. aeruginosa PAO1. Deletion of domain II and the extended motif results in enzyme inactivation and structural instability of the enzyme. The His6-tag fusion at the C-ICL protein produced a less efficient enzyme than fusion at the N-ICL, but without affecting the acetate assimilation or virulence. The PaICL homotetrameric structure of the enzyme was more stable in the N-His6-ICL than in the C-His6-ICL, suggesting that the C-terminus is critical for the ICL quaternary conformation. The ICL-mutant A39 complemented with the recombinant proteins N-His6-ICL or C-His6-ICL were more virulent than the WT PAO1 strain. The findings indicate that the domain II and the extended motif are essential for the ICL structure/function, and the C-terminus is involved in its quaternary structure conformation, confirming that in P. aeruginosa, the ICL is essential for acetate assimilation and virulence.


Asunto(s)
Isocitratoliasa , Pseudomonas aeruginosa , Isocitratoliasa/genética , Isocitratoliasa/química , Isocitratoliasa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ciclo del Ácido Cítrico , Glioxilatos/metabolismo , Acetatos/metabolismo
6.
Protein Eng Des Sel ; 362023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-37707513

RESUMEN

Computational protein design promises the ability to build tailor-made proteins de novo. While a range of de novo proteins have been constructed so far, the majority of these designs have idealized topologies that lack larger cavities which are necessary for the incorporation of small molecule binding sites or enzymatic functions. One attractive target for enzyme design is the TIM-barrel fold, due to its ubiquity in nature and capability to host versatile functions. With the successful de novo design of a 4-fold symmetric TIM barrel, sTIM11, an idealized, minimalistic scaffold was created. In this work, we attempted to extend this de novo TIM barrel by incorporating a helix-loop-helix motif into its ßα-loops by applying a physics-based modular design approach using Rosetta. Further diversification was performed by exploiting the symmetry of the scaffold to integrate two helix-loop-helix motifs into the scaffold. Analysis with AlphaFold2 and biochemical characterization demonstrate the formation of additional α-helical secondary structure elements supporting the successful extension as intended.


Asunto(s)
Física , Proteínas , Modelos Moleculares , Proteínas/química , Secuencias Hélice-Asa-Hélice , Pliegue de Proteína
7.
Biotechnol Biofuels Bioprod ; 15(1): 138, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510318

RESUMEN

BACKGROUND: 1,3-ß-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-ß-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-ß-glucan without incurring in autolysis. RESULTS: To elucidate the molecular mechanisms at the basis of 1,3-ß-glucan metabolism in fungal saprotrophs, the putative exo-1,3-ß-glucanase G9376 and a truncated form of the putative glucan endo-1,3-ß-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-ß-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-ß-transglucanase/branching activity toward 1,3-ß-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-ß-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (ß/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-ß-transglucanase are discussed. CONCLUSIONS: The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.

8.
Appl Environ Microbiol ; 88(17): e0104622, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36000858

RESUMEN

Exploring the potential functions of nonconserved residues on the outer side of α-helices and systematically optimizing them are pivotal for their application in protein engineering. Based on the evolutionary structural conservation analysis of GH5_5 cellulases, a practical molecular improvement strategy was developed. Highly variable sites on the outer side of the α-helices of the GH5_5 cellulase from Aspergillus niger (AnCel5A) were screened, and 14 out of the 34 highly variable sites were confirmed to exert a positive effect on the activity. After the modular combination of the positive mutations, the catalytic efficiency of the mutants was further improved. By using CMC-Na as the substrate, the catalytic efficiency and specific activity of variant AnCel5A_N193A/T300P/D307P were approximately 2.0-fold that of AnCel5A (227 ± 21 versus 451 ± 43 ml/s/mg and 1,726 ± 19 versus 3,472 ± 42 U/mg, respectively). The half-life (t1/2) of variant AnCel5A_N193A/T300P/D307P at 75°C was 2.36 times that of AnCel5A. The role of these sites was successfully validated in other GH5_5 cellulases. Computational analyses revealed that the flexibility of the loop 6-loop 7-loop 8 region was responsible for the increased catalytic performance. This work not only illustrated the important role of rapidly evolving positions on the outer side of the α-helices of GH5_5 cellulases but also revealed new insights into engineering the proteins that nature left as clues for us to find. IMPORTANCE A comprehensive understanding of the residues on the α-helices of the GH5_5 cellulases is important for catalytic efficiency and stability improvement. The main objective of this study was to use the evolutionary conservation and plasticity of the TIM-barrel fold to probe the relationship between nonconserved residues on the outer side of the α-helices and the catalytic efficiency of GH5_5 cellulases by conducting structure-guided protein engineering. By using a four-step nonconserved residue screening strategy, the functional role of nonconserved residues on the outer side of the α-helices was effectively identified, and a variant with superior performance and capability was constructed. Hence, this study proved the effectiveness of this strategy in engineering GH5_5 cellulases and provided a potential competitor for industrial applications. Furthermore, this study sheds new light on engineering TIM-barrel proteins.


Asunto(s)
Celulasa , Celulasas , Aspergillus niger/genética , Aspergillus niger/metabolismo , Catálisis , Celulasa/metabolismo , Celulasas/metabolismo , Mutación
9.
Protein Sci ; 31(2): 513-527, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34865275

RESUMEN

Protein stability can be fine-tuned by modifying different structural features such as hydrogen-bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three-dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced.


Asunto(s)
Pliegue de Proteína , Proteínas , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica , Proteínas/química
10.
Methods Mol Biol ; 2411: 219-240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34816408

RESUMEN

For the past several decades, aquaculture all around the world have been retarded by various disease outbreaks caused by many pathogens including parasites, bacteria, and viruses. Apart from being harmful to human health, the emerging diseases also dramatically affect the farm animals such as livestock and aquatic animals. To cope with this problem, one of the effective prophylactic measures is the application of vaccine. However, the traditional vaccines still have some limitations and several drawbacks; thus there is a need for the development of novel advanced vaccine such as chimeric multiepitope vaccine. Based on the current understanding of genomics and immunoproteomics together with the present bioinformatics tools, the researchers can identify the potential targeted epitopes being recognizable by the immune cells. Additionally, another critical point that should be considered for designing the chimeric multiepitope vaccine is the exposure of all those epitopes to the host organism. Thus, selecting an appropriate linker and joining each identified epitope in a suitable site can create the ideal protein structure protruding all the selected epitopes on its surface. Herein, our study would provide the fundamental platform to develop the multiepitope B-cell vaccine for the prevention and control of the aquatic animal disease starting with the epitope prediction until in vivo testing the multiepitope vaccine efficacy.


Asunto(s)
Desarrollo de Vacunas , Animales , Biología Computacional , Epítopos , Epítopos de Linfocito T , Humanos , Inmunogenicidad Vacunal , Eficacia de las Vacunas , Vacunas de Subunidad
11.
Enzyme Microb Technol ; 152: 109938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34753033

RESUMEN

Hydrolytic enzymes are highly demanded in the industry. Thermostability is an important property of enzymes that affects the economic costs of the industrial processes. The rational design of GH10 xylanase E (XylE) Penicillium canescens for the thermostability improvement was directed by ΔΔG calculations and structure analysis. Amino acid substitutions with stabilizing values of ΔΔG and providing an increase in side-chain volume of buried residues were performed experimentally. From the six designed substitutions, four substitutions appeared to be stabilizing, one - destabilizing, and one - neutral. For the improved XylE variants, values of Tm were increased by 1.1-3.1 °C, and times of half-life at 70 °C were increased in 1.3-1.7-times. Three of the four stabilizing substitutions were located in the N- or the C-terminus region. This highlights the importance of N- and C-terminus for the thermostability of GH10 xylanases and also enzymes with (ß/α)8 TIM barrel type of structure. The criteria of stabilizing values of ΔΔG and increased side-chain volume of buried residues for selection of substitutions may be applied in the rational design for thermostability improvement.


Asunto(s)
Penicillium , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Penicillium/genética , Penicillium/metabolismo , Temperatura
12.
Front Mol Biosci ; 8: 679915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124159

RESUMEN

Networks of noncovalent amino acid interactions propagate allosteric signals throughout proteins. Tryptophan synthase (TS) is an allosterically controlled bienzyme in which the indole product of the alpha subunit (αTS) is transferred through a 25 Å hydrophobic tunnel to the active site of the beta subunit (ßTS). Previous nuclear magnetic resonance and molecular dynamics simulations identified allosteric networks in αTS important for its function. We show here that substitution of a distant, surface-exposed network residue in αTS enhances tryptophan production, not by activating αTS function, but through dynamically controlling the opening of the indole channel and stimulating ßTS activity. While stimulation is modest, the substitution also enhances cell growth in a tryptophan-auxotrophic strain of Escherichia coli compared to complementation with wild-type αTS, emphasizing the biological importance of the network. Surface-exposed networks provide new opportunities in allosteric drug design and protein engineering, and hint at potential information conduits through which the functions of a metabolon or even larger proteome might be coordinated and regulated.

13.
J Biol Chem ; 297(1): 100823, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029591

RESUMEN

Bacterial two-component flavin-dependent monooxygenases cleave the stable C-S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS-) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C-S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS- closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD's functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Multimerización de Proteína , Pseudomonas fluorescens/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Mononucleótido de Flavina/metabolismo , Mesilatos/metabolismo , Modelos Moleculares , Especificidad por Sustrato , Azufre/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875592

RESUMEN

The amino acid sequences of proteins have evolved over billions of years, preserving their structures and functions while responding to evolutionary forces. Are there conserved sequence and structural elements that preserve the protein folding mechanisms? The functionally diverse and ancient (ßα)1-8 TIM barrel motif may answer this question. We mapped the complex six-state folding free energy surface of a ∼3.6 billion y old, bacterial indole-3-glycerol phosphate synthase (IGPS) TIM barrel enzyme by equilibrium and kinetic hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS on the intact protein reported exchange in the native basin and the presence of two thermodynamically distinct on- and off-pathway intermediates in slow but dynamic equilibrium with each other. Proteolysis revealed protection in a small (α1ß2) and a large cluster (ß5α5ß6α6ß7) and that these clusters form cores of stability in Ia and Ibp The strongest protection in both states resides in ß4α4 with the highest density of branched aliphatic side chain contacts in the folded structure. Similar correlations were observed previously for an evolutionarily distinct archaeal IGPS, emphasizing a key role for hydrophobicity in stabilizing common high-energy folding intermediates. A bioinformatics analysis of IGPS sequences from the three superkingdoms revealed an exceedingly high hydrophobicity and surprising α-helix propensity for ß4, preceded by a highly conserved ßα-hairpin clamp that links ß3 and ß4. The conservation of the folding mechanisms for archaeal and bacterial IGPS proteins reflects the conservation of key elements of sequence and structure that first appeared in the last universal common ancestor of these ancient proteins.


Asunto(s)
Indol-3-Glicerolfosfato Sintasa/metabolismo , Dominios Proteicos/fisiología , Estructura Secundaria de Proteína/genética , Secuencia de Aminoácidos/genética , Aminoácidos/genética , Proteínas Bacterianas/química , Enlace de Hidrógeno , Indol-3-Glicerolfosfato Sintasa/fisiología , Cinética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos/genética , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
15.
J Struct Biol ; 213(2): 107737, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838225

RESUMEN

Breast regression protein 39 (BRP39) is a 39 kDa protein that is a member of chitolectin class of glycosyl hydrolase family 18 (GH18). High expression levels of BRP39 have been detected in breast carcinoma. It helps in proliferation of cells during the progression of this disease and may act as a signaling factor. BRP39 may act as a potential candidate for rational structure-based drug design against breast carcinoma. In this study, we report the crystal structure of mouse recombinant BRP39 expressed in E. coli. The structure was solved by molecular replacement and refined to 2.6 Å resolution. The overall structure of BRP39 consisted of two globular domains: a large (ß/α)8 triosephosphate isomerase (TIM) barrel domain and a small (α + ß) domain. Three non-proline cis-peptides were detected in the sugar-binding cleft of BRP39, including Ser57-Phe58, Leu141-Tyr142, and Trp353-Ala354. The latter residues were conserved in other GH18 family members. It was notable that the conformation of critical Trp100 residue within the sugar-binding cleft was oriented away from the barrel. The side-chain conformation was found to be similar to that observed in chitinases, however, it was oriented into the barrel in other chitinase-like proteins (CLPs). The conformation of this critical residue may have significant implications in sugar binding. Further, two amino acid substitutions were observed in the sugar-binding groove of BRP39. The conserved Asn100 and Arg263 in Hcgp39 and other CLPs proteins (SPX-40 structures) were substituted by Lys101 and Lys264 in BRP39 which may have a significant impact on the sugar-binding properties.


Asunto(s)
Proteína 1 Similar a Quitinasa-3/química , Proteína 1 Similar a Quitinasa-3/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Dominio Catalítico , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/aislamiento & purificación , Quitinasas/química , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Azúcares/metabolismo , Triptófano/química
16.
Protein Sci ; 30(5): 982-989, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723882

RESUMEN

The ability to construct novel enzymes is a major aim in de novo protein design. A popular enzyme fold for design attempts is the TIM barrel. This fold is a common topology for enzymes and can harbor many diverse reactions. The recent de novo design of a four-fold symmetric TIM barrel provides a well understood minimal scaffold for potential enzyme designs. Here we explore opportunities to extend and diversify this scaffold by adding a short de novo helix on top of the barrel. Due to the size of the protein, we developed a design pipeline based on computational ab initio folding that solves a less complex sub-problem focused around the helix and its vicinity and adapt it to the entire protein. We provide biochemical characterization and a high-resolution X-ray structure for one variant and compare it to our design model. The successful extension of this robust TIM-barrel scaffold opens opportunities to diversify it towards more pocket like arrangements and as such can be considered a building block for future design of binding or catalytic sites.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas/química , Estructura Secundaria de Proteína , Proteínas/genética
17.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 205-216, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33559609

RESUMEN

The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double-displacement mechanism. Studying reaction intermediates, such as the glycosyl-enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo-1,4-ß-glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double-displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the -1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH-A.


Asunto(s)
Celulasa/química , Oligosacáridos , Celulasa/metabolismo , Cristalografía por Rayos X , Sustancias Macromoleculares , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica
18.
J Struct Biol X ; 4: 100034, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32743545

RESUMEN

Enzyme I (EI), which is the key enzyme to activate the bacterial phosphotransferase system, plays an important role in the regulation of several metabolic pathways and controls the biology of bacterial cells at multiple levels. The conservation and ubiquity of EI among different types of bacteria makes the enzyme a potential target for antimicrobial research. Here, we use NMR-based fragment screening to identify novel inhibitors of EI. We identify three molecular fragments that allosterically inhibit the phosphoryl transfer reaction catalyzed by EI by interacting with the enzyme at a surface pocket located more than 10 Å away from the substrate binding site. Interestingly, although the three molecules share the same binding pocket, we observe that two of the discovered EI ligands act as competitive inhibitors while the third ligand acts as a mixed inhibitor. Characterization of the EI-inhibitor complexes by NMR and Molecular Dynamics simulations reveals key interactions that perturb the fold of the active site and provides structural foundation for the different inhibitory activity of the identified molecular fragments. In particular, we show that contacts between the inhibitor and the side-chain of V292 are crucial to destabilize binding of the substrate to EI. In contrast, mixed inhibition is caused by additional contacts between the inhibitor and ⍺-helix 2 that perturb the active site structure and turnover in an allosteric manner. We expect our results to provide the basis for the development of second generation allosteric inhibitors of increased potency and to suggest novel molecular strategies to combat drug-resistant infections.

19.
Protein Sci ; 29(9): 1911-1923, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643222

RESUMEN

Protein evolution proceeds by a complex response of organismal fitness to mutations that can simultaneously affect protein stability, structure, and enzymatic activity. To probe the relationship between genotype and phenotype, we chose a fundamental paradigm for protein evolution, folding, and design, the (ßα)8 TIM barrel fold. Here, we demonstrate the role of long-range allosteric interactions in the adaptation of an essential hyperthermophilic TIM barrel enzyme to mesophilic conditions in a yeast host. Beneficial fitness effects observed with single and double mutations of the canonical ßα-hairpin clamps and the α-helical shell distal to the active site revealed an underlying energy network between opposite faces of the cylindrical ß-barrel. We experimentally determined the fitness of multiple mutants in the energetic phase plane, contrasting the energy barrier of the chemical reaction and the folding free energy of the protein. For the system studied, the reaction energy barrier was the primary determinant of organism fitness. Our observations of long-range epistatic interactions uncovered an allosteric pathway in an ancient and ubiquitous enzyme that may provide a novel way of designing proteins with a desired activity and stability profile.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326166

RESUMEN

Analyzing the structure of proteins from extremophiles is a promising way to study the rules governing the protein structure, because such proteins are results of structural and functional optimization under well-defined conditions. Studying the structure of chitinases addresses an interesting aspect of enzymology, because chitin, while being the world's second most abundant biopolymer, is also a recalcitrant substrate. The crystal structure of a thermostable chitinase from Streptomyces thermoviolaceus (StChi40) has been solved revealing a ß/α-barrel (TIM-barrel) fold with an α+ß insertion domain. This is the first chitinase structure of the multi-chitinase system of S. thermoviolaceus. The protein is also known to refold efficiently after thermal or chemical denaturation. StChi40 is structurally close to the catalytic domain of psychrophilic chitinase B from Arthrobacter TAD20. Differences are noted in comparison to the previously examined chitinases, particularly in the substrate-binding cleft. A comparison of the thermophilic enzyme with its psychrophilic homologue revealed structural features that could be attributed to StChi40's thermal stability: compactness of the structure with trimmed surface loops and unique disulfide bridges, one of which is additionally stabilized by S-π interactions with aromatic rings. Uncharacteristically for thermophilic proteins, StChi40 has fewer salt bridges than its mesophilic and psychrophilic homologues.


Asunto(s)
Quitinasas/química , Modelos Moleculares , Conformación Proteica , Replegamiento Proteico , Streptomyces/enzimología , Sustitución de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Quitinasas/genética , Cristalografía por Rayos X , Disulfuros , Pliegue de Proteína , Streptomyces/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA