Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Med Phys ; 51(5): 3746-3757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252746

RESUMEN

BACKGROUND: The AAPM TG-43U1 formalism remains the clinical standard for dosimetry of low- and high-energy γ $\gamma$ -emitting brachytherapy sources. TG-43U1 and related reports provide consensus datasets of TG-43 parameters derived from various published measured data and Monte Carlo simulations. These data are used to perform standardized and fast dose calculations for brachytherapy treatment planning. PURPOSE: Monte Carlo TG-43 dosimetry parameters are commonly derived to characterize novel brachytherapy sources. RapidBrachyTG43 is a module of RapidBrachyMCTPS, a Monte Carlo-based treatment planning system, designed to automate this process, requiring minimal user input to prepare Geant4-based Monte Carlo simulations for a source. RapidBrachyTG43 may also perform a TG-43 dose to water-in-water calculation for a plan, substantially accelerating the same calculation performed using RapidBrachyMCTPS's Monte Carlo dose calculation engine. METHODS: TG-43 parameters S K / A $S_K/A$ , Λ $\Lambda$ , g L ( r ) $g_L(r)$ , and F ( r , θ ) $F(r,\theta)$ were calculated using three commercial source models, one each of 125 $^{125}$ I, 192 $^{192}$ Ir, and 60 $^{60}$ Co, and were benchmarked to published data. TG-43 dose to water was calculated for a clinical breast brachytherapy plan and was compared to a Monte Carlo dose calculation with all patient tissues, air, and catheters set to water. RESULTS: TG-43 parameters for the three simulated sources agreed with benchmark datasets within tolerances specified by the High Energy Brachytherapy Dosimetry working group. A gamma index comparison between the TG-43 and Monte Carlo dose-to-water calculations with a dose difference and difference to agreement criterion of 1%/1 mm yielded a 98.9% pass rate, with all relevant dose volume histogram metrics for the plan agreeing within 1%. Performing a TG-43-based dose calculation provided an acceleration of dose-to-water calculation by a factor of 165. CONCLUSIONS: Determination of TG-43 parameter data for novel brachytherapy sources may now be facilitated by RapidBrachyMCTPS. These parameter datasets and existing consensus or published datasets may also be used to determine the TG-43 dose for a plan in RapidBrachyMCTPS.


Asunto(s)
Braquiterapia , Método de Montecarlo , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Braquiterapia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosis de Radiación , Humanos
2.
J Med Phys ; 48(3): 268-273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969149

RESUMEN

Purpose: According to the revised Task Group number 43 recommendations, a brachytherapy source must be validated against a similar or identical source before its clinical application. The purpose of this investigation is to verify the dosimetric data of the high dose rate (HDR) BEBIG 192Ir source (Ir2.A85-2). Materials and Methods: The HDR 192Ir encapsulated seed was simulated and its main dosimetric data were calculated using Geant4 Application for Tomographic Emission (GATE) simulation code. Cubic cells were used for the calculation of dose rate constant and radial dose function while for anisotropy function ring cells were used. DoseActors were simulated and attached to the respective cells to obtain the required data. Results: The dose rate constant was obtained as 1.098 ± 0.003 cGy.h - 1.U - 1, differing by 1.0% from the reference value reported by Granero et al. Similarly, the calculated values for radial dose and anisotropy functions presented good agreement with the results obtained by Granero et al. Conclusion: The results of this study suggest that the GATE Monte Carlo code is a valid toolkit for benchmarking brachytherapy sources and can be used for brachytherapy simulation-based studies and verification of brachytherapy treatment planning systems.

3.
Brachytherapy ; 22(2): 260-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36623989

RESUMEN

PURPOSE: The purpose of this work is to provide measured data for the modified TG43 parameters [DeWerd et al.] for the newest, Galden-cooled S7600 Xoft Axxent source model. METHODS: The measurement of radial dose distributions at distances of 1 cm to 4 cm from the source was performed using TLD100 microcubes, EBT3 film, and an Exradin A26 microionization chamber. The overall uncertainty and reproducibility of each dosimeter was evaluated for its use in determining the radial dose function and dose rate conversion coefficient. An acrylic phantom developed in house for previous works was used to measure the polar anisotropy function using TLD100 microcubes at distances of 1 cm, 2 cm, and 5 cm from the source. RESULTS: The Exradin A26 chamber was deemed most suitable for measuring the radial dose function. Values determined had a maximum k = 1 uncertainty of 1.4%. The dose rate conversion coefficient measured with the chamber was found to be 9.33 ± 0.21cGy/hrµGy/min. TLD100 microcube measurements of the polar anisotropy had average uncertainties of 6%, 3%, and 2.5% at 1 cm, 2 cm, and 5 cm, respectively. CONCLUSIONS: The modified TG43 parameters for the bare source were measured with reasonable uncertainty. The values determined will aid with the clinical implementation of the source for breast and endometrial cancer applications.


Asunto(s)
Braquiterapia , Humanos , Braquiterapia/métodos , Radiometría , Reproducibilidad de los Resultados , Anisotropía , Incertidumbre , Dosificación Radioterapéutica , Método de Montecarlo
4.
Med Phys ; 50(3): 1928-1941, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36542404

RESUMEN

PURPOSE: To update and extend version 2 of the Carleton Laboratory for Radiotherapy Physics (CLRP) TG-43 dosimetry database (CLRP_TG43v2) for high-energy (HE, ≥50 keV) brachytherapy sources (1 169 Yb, 23 192 Ir, 5 137 Cs, and 4 60 Co) using egs_brachy, an open-source EGSnrc application. A comprehensive dataset of TG-43 parameters is compiled, including detailed source descriptions, dose-rate constants, radial dose functions, 1D and 2D anisotropy functions, along-away dose-rate tables, Primary and Scatter Separated (PSS) dose tables, and mean photon energies escaping each source. The database also documents the source models which are freely distributed with egs_brachy. ACQUISITION AND VALIDATION METHODS: Datasets are calculated after a recoding of the source geometries using the egs++ geometry package and its egs_brachy extensions. Air kerma per history is calculated in a 10 × 10 × $\,{\times}\, 10\,{\times}\,$ 0.05 cm3 voxel located 100 cm from the source along the transverse axis and then corrected for the lateral and thickness dimensions of the scoring voxel to give the air kerma on the central axis at a point 100 cm from the source's mid-point. Full-scatter water phantoms with varying voxel resolutions in cylindrical coordinates are used for dose calculations. Most data (except for 60 Co) are based on the assumption of charged particle equilibrium and ignore the potentially large effects of electron transport very close to the source and dose from initial beta particles. These effects are evaluated for four representative sources. For validation, data are compared to those from CLRP_TG43v1 and published data. DATA FORMAT AND ACCESS: Data are available at https://physics.carleton.ca/clrp/egs_brachy/seed_database_v2 or http://doi.org/10.22215/clrp/tg43v2 including in Excel (.xlsx) spreadsheets, and are presented graphically in comparisons to previously published data for each source. POTENTIAL APPLICATIONS: The CLRP_TG43v2 database has applications in research, dosimetry, and brachytherapy planning. This comprehensive update provides the medical physics community with more precise and in some cases more accurate Monte Carlo (MC) TG-43 dose calculation parameters, as well as fully benchmarked and described source models which are distributed with egs_brachy.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Dosificación Radioterapéutica , Radiometría/métodos , Física , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador/métodos
5.
J Contemp Brachytherapy ; 15(6): 448-452, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38230401

RESUMEN

Purpose: Brachytherapy (BT, interventional radiotherapy) is a well-established radiotherapy technique capable of delivering high doses to tumors while sparing organs at risk (OARs). Currently, the clinically accepted dose calculation algorithm used is TG-43. In the TG-186 report, new model-based dose calculation algorithms (MBDCA), such as Elekta's advanced collapsed cone engine (ACE), have been introduced, although their clinical application is yet to be fully realized. This study aimed to investigate two aspects of TG-186: firstly, a comparison of dose distributions calculated with TG-43 and TG-186 for skin tumors; and secondly, an exploration of the impact of using a water bolus on the coverage of clinical target volume (CTV) and OARs. Material and methods: Ten treatment plans for high-dose-rate IRT were developed. All plans were initially calculated using the TG-43 algorithm, and were subsequently re-calculated with TG-186. In addition, one of the treatment plans was assessed with both TG-43 and TG-186, using 10 different water bolus thicknesses ranging from 0 to 5 cm. To assess dose variations, the following dose-volume histogram (DVH) parameters were compared: D2cc and D0.01cc for OARs, and V150, V100, V95 and V90 for CTV coverage. Results and conclusions: The average dosimetric results for CTV and OARs, as calculated by both algorithms, revealed statistically significant lower values for TG-186 when compared with TG-43. The presence of a bolus was observed to enhance CTV coverage for the TG-186 algorithm, with a bolus thickness of 2 cm being the point at which ACE calculations matched those of TG-43. This study identified significant differences in dosimetric parameters for skin tumors when comparing the TG-43 and TG-186 algorithms. Moreover, it was demonstrated that the inclusion of a water bolus increased CTV coverage in TG-186 calculations.

6.
Radiat Oncol J ; 40(3): 180-191, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36200307

RESUMEN

PURPOSE: Intracavitary brachytherapy is one of the important methods of gynecological cancer treatment. The effect of attenuation is not considered in the dose calculation method released by the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43). In this study, the effect of high-dose rate (HDR) brachytherapy applicators on dose distribution was measured using Gafchromic films and well-type ionization chamber. MATERIALS AND METHODS: A plan created by the treatment planning system was first executed using a well-type ionization chamber with a water equivalent elasto-gel in place for charge collection. Again, same plan was executed using central tandems of various angulations with different diameters of vaginal cylinders and charge collection was measured. For in vitro dose measurements this plan was also executed on tandem and vaginal cylinder assembly with Gafchromic films fixed on the surface of vaginal cylinder. RESULTS: The results show that the central tandem when used with different vaginal cylinders resulted in increase in effective attenuation of the beam. The central tandem of 300 angulations when used with a 35-mm diameter vaginal cylinder results in maximum attenuation whereas the 0º tandem when used with 20-mm diameter vaginal cylinder results in least attenuation of the beam. CONCLUSION: Due to the attenuation by various applicators used in brachytherapy for the treatment of gynecological cancers, it can be concluded that the difference between practical dose and the treatment planning system calculated dose should be considered for the correct estimation of the dose to the target and the organs-at-risk.

7.
Appl Radiat Isot ; 186: 110294, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660985

RESUMEN

Permanent implantation of the iodine-125 brachytherapy sources is an irradiation technique for the treatment of the localized cancer. As described by the American Association of Physicists in Medicine (AAPM) Task group 43 (TG-43U1), it is crucial to determine the dose distribution around the brachytherapy seed before its effective clinical practice or even before releasing the sources for the treatment. In the present work, according to TG-43U1 report, the dosimetric parameters of BEBIG iodine-125 Low Dose Rate brachytherapy IsoSeed® I25.S06 source model was investigated. To perform the dose calculations, we have used GEANT4 Application for Emission Tomography (GATE) Monte Carlo simulations. Interesting results have been found. In particular, the dosimetric quantities like the radial dose function gL(r), the anisotropy function F(r,θ) and the dose rate constant Λ have been obtained. In addition, our data are in good agreement with the previous published works. It is also remarked that, GATE Monte Carlo code reproduces accurate dosimetric parameters results.


Asunto(s)
Braquiterapia , Radioisótopos de Yodo , Anisotropía , Braquiterapia/métodos , Radioisótopos de Yodo/uso terapéutico , Método de Montecarlo , Radiometría , Dosificación Radioterapéutica
8.
Heliyon ; 8(3): e09168, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35368537

RESUMEN

Purpose: This study aims to validate the dosimetric characteristics of High Dose Rate (HDR) 60Co source (Co0.A86 model) using GATE Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report number 43, the dosimetric parameters of a new brachytherapy source should be verified either experimentally or by Monte Carlo calculation before clinical applications. The validated 60Co source in this study will be used for the simulation of intensity-modulated brachytherapy (IMBT) of vaginal cancer using the same GATE Geant4-based Monte Carlo code in the future. Materials and methods: GATE (version 9.0) simulation code was used to model and calculate the required TG-43U1 dosimetric data of the 60Co HDR source. DoseActors were defined for calculation of dose rate constant, radial dose function, and anisotropy function in a water phantom with an 80 cm radius. Results: The dose rate constant was obtained as 1.070 ± 0.008 cGy . h - 1 . U - 1 which shows a relative difference of 2.01% compared to the consensus value, 1.092  â€‹cGy . h - 1 . U - 1 . The calculated results of anisotropy and radial dose functions starting from 0.1 cm to 10 cm around the source showed excellent agreement with the results of published studies. The mean variation of the radial dose and anisotropy functions values from the consensus data were 1% and 0.9% respectively. Conclusion: Findings from this investigation revealed that the validation of the HDR 60Co source is feasible by the GATE Geant4-based Monte Carlo code. As a result, the GATE Monte Carlo code can be used for the verification of the brachytherapy treatment planning system.

9.
Med Phys ; 49(7): 4804-4811, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35279854

RESUMEN

PURPOSE: To assess the accuracy of the movement of a brachytherapy source using a high-speed camera for evaluating source position, dwell time, and transit dose. METHODS: A high-speed camera was used to record the source position of an Ir-192 source relative to a ruler within a custom positioning jig in a remote afterloading system. The analyzed frames can be used to assess dwell positions and times. Treatment plans had multiple dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in 2.5- and 5-mm step sizes. Images were acquired at a rate of 146 frames/s. Acquired images were processed to automatically track the actual source using the correlation between a template image and each frame. The brachytherapy dose calculation formalism (AAPM TG43-U1) was applied to each frame to evaluate the transit dose contribution to the total dose. RESULTS: The differences in measured source positions from the nominal for dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in treatment plans were approximately ≤1 mm. The corresponding differences in measured dwell times from the nominal values at 5 mm steps were -15, -9, -5, and 5 ms, respectively. The source velocities at 5 mm steps were approximately 393 mm/s. The dose differences at 5 mm from the source movement with and without the transit dose for these dwell times were 38%, 7%, 3%, and 2%, respectively. CONCLUSIONS: Recording a brachytherapy source using a high-speed camera allowed the evaluation of positional and dwell time accuracies as well as dosimetry assessments, such as the transit dose, based on the application of AAPM TG-43U1.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Radiometría , Dosificación Radioterapéutica
10.
J Med Phys ; 47(4): 352-361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36908487

RESUMEN

Aims: Most brachytherapy treatment planning system (TPS) commissioning requires data input based on the American Association of Physicists in Medicine Task Group-43 formalism. The commissioning accuracy is very important for dose calculation. The aim of this study is the implementation of a brachytherapy TPS into a clinical environment and check the TPS calculated dose accuracy. Subjects and Methods: After introducing data of the different catheters (CIS Bio International, Saclay, France), composed of several Cesium-137 Eckert and Ziegler BEBIG CSM-11 radioactive sources; for XiO (CMS, St. Louis) brachytherapy TPS, the TPS dose calculation accuracy was investigated by comparing between the TPS calculated dose distribution (DD) for all the catheters with (1) the measuring DD using EBT3 GAFChromic film and (2) calculating DD by egs_brachy (Electron Gamma Shower, National Research Council of Canada) Monte Carlo simulation. The phantom used for this study consists of six PTW slabs 30 cm × 30 cm × 1 cm of polymethyl methacrylate with a Delouche MEDpro applicator on the top. The TPS DD was calculated on the computed tomography scan of this phantom. Statistical Analysis Used: PTW VeriSoft version 6.0.1.7 (PTW-Freiburg, Germany) software was used for analyzing scanned films and to perform the comparison based on the gamma index distribution. Results: For each catheter, the gamma index distribution showed agreement >95% of all pixels in both verification methods, with gamma ≤1. Conclusions: We confirm the commissioning accuracy and that the TPS can be used for clinical purposes.

11.
J Med Phys ; 47(3): 270-278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684701

RESUMEN

Introduction: As per the recommendations of the American Association of Physicists in Medicine Task Group 43, Monte Carlo (MC) investigators should reproduce previously published dose distributions whenever new features of the code are explored. The purpose of the present study is to benchmark the TG-43 dosimetric parameters calculated using the new MC user-code egs_brachy of EGSnrc code system for three different radionuclides 192Ir, 169Yb, and 125I which represent high-, intermediate-, and low-energy sources, respectively. Materials and Methods: Brachytherapy sources investigated in this study are high-dose rate (HDR) 192Ir VariSource (Model VS2000), 169Yb HDR (Model 4140), and 125I -low-dose-rate (LDR) (Model OcuProsta). The TG-43 dosimetric parameters such as air-kerma strength, S k, dose rate constant, Λ, radial dose function, g(r) and anisotropy function, F(r,θ) and two-dimensional (2D) absorbed dose rate data (along-away table) are calculated in a cylindrical water phantom of mass density 0.998 g/cm3 using the MC code egs_brachy. Dimensions of phantom considered for 192Ir VS2000 and 169Yb sources are 80 cm diameter ×80 cm height, whereas for 125I OcuProsta source, 30 cm diameter ×30 cm height cylindrical water phantom is considered for MC calculations. Results: The dosimetric parameters calculated using egs_brachy are compared against the values published in the literature. The calculated values of dose rate constants from this study agree with the published values within statistical uncertainties for all investigated sources. Good agreement is found between the egs_brachy calculated radial dose functions, g(r), anisotropy functions, and 2D dose rate data with the published values (within 2%) for the same phantom dimensions. For 192Ir VS2000 source, difference of about 28% is observed in g(r) value at 18 cm from the source which is due to differences in the phantom dimensions. Conclusion: The study validates TG-43 dose parameters calculated using egs_brachy for 192Ir, 169Yb, and 125I brachytherapy sources with the values published in the literature.

12.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771479

RESUMEN

This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations' outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling.

13.
J Med Phys ; 46(3): 197-203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703104

RESUMEN

AIMS: This study aimed to validate the dosimetric data of low-energy photon-emitting low-dose rate (LE-LDR) brachytherapy seed sources in commercial treatment planning system (TPS). MATERIALS AND METHODS: The LE-LDR seed sources dosimetric data were published in the American Association of Physicists in Medicine (AAPM) Task Group reports TG-43 (1995), TG-43U1 (2004), TG-43U1S1 (2007), and TG-43U1S2. The Bhabha Atomic Research centre (BARC) 125I Ocu-Prosta seed dosimetry data are also available in the literature. The commercially available TPSs are using both two-dimensional (cylindrically symmetric line-source) and one-dimensional (1D) (point source) dose-calculation formalisms. TPS used in this study uses only 1D dose-calculation formalism for permanent implant dosimetry. The point-dose calculation, dose summation, isodose representation, and dose-volume histogram quality assurance tests were performed in this study. The point-source dose-calculation tests were performed for all the available sources in the literature. The others tests were performed for the I-125 BARC Ocu-Prosta seeds. The TPS-calculated doses were validated using manual calculation. RESULTS AND DISCUSSION: In point-source calculation test, the TPS-calculated point-dose values are within ±2% agreement with manually calculated dose for all the seeds studied. The agreement between the TPS and manually calculated dose is 0.5% for the dose summation test. The isodose line pass through the grid points at an equal distance was verified visually on the computer screen for seed used clinically. In dose-volume histogram test, the TPS-determined volume was compared with the real volume. CONCLUSION: Misinterpretation of the TPS test and/or misunderstanding of the TG-43 dose-calculation formalism may cause large errors. It is very important to validate the TPS using literature provided dosimetric data. The dosimetric data of BARC 125I Ocu-Prosta Seed are validated with other AAPM TG-43-recommended seeds. The dose calculation of Best® NOMOS permanent implant TPS is accurate for all permanent implant seeds studied.

14.
Phys Med Biol ; 66(21)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34663769

RESUMEN

OBJECTIVE: The relative TG-43 dosimetry parameters of the INTRABEAM (Carl Zeiss Meditec AG, Jena, Germany) bare probe were recently reported by Ayala Alvarezet al(2020Phys. Med. Biol.65245041). The current study focuses on the dosimetry characterization of the INTRABEAM source with the eight available spherical applicators according to the TG-43 formalism using Monte Carlo (MC) simulations. APPROACH: This report includes the calculated dose-rate conversion coefficients that determine the absolute dose rate to water at a reference point of 10 mm from the applicator surface, based on calibration air-kerma rate measurements at 50 cm from the source on its transverse plane. Since the air-kerma rate measurements are not yet provided from a standards laboratory for the INTRABEAM, the values in the present study were calculated with MC. This approach is aligned with other works in the search for standardization of the dosimetry of electronic brachytherapy sources. As a validation of the MC model, depth dose calculations along the source axis were compared with calibration data from the source manufacturer. MAIN RESULTS: The calculated dose-rate conversion coefficients were 434.0 for the bare probe, and 683.5, 548.3, 449.9, 376.5, 251.0, 225.6, 202.8, and 182.6 for the source with applicators of increasing diameter from 15 to 50 mm, respectively. The radial dose and the 2D anisotropy functions of the TG-43 formalism were also obtained and tabulated in this document. SIGNIFICANCE: This work presents the data required by a treatment planning system for the characterization of the INTRABEAM system in the context of intraoperative radiotherapy applications.


Asunto(s)
Braquiterapia , Radiometría , Calibración , Método de Montecarlo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
15.
Phys Eng Sci Med ; 44(3): 871-886, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142317

RESUMEN

To obtain dose distributions more physically representative to the patient anatomy in brachytherapy, calculation algorithms that can account for heterogeneity are required. The current standard AAPM Task Group No 43 (TG-43) dose calculation formalism has some clinically relevant dosimetric limitations. Lack of tissue heterogeneity and scattered dose corrections are the major weaknesses of the TG-43 formalism and could lead to systematic dose errors in target volumes and organs at risk. Over the last decade, model-based dose calculation algorithms (MBDCAs) have been clinically offered as complementary algorithms beyond the TG43 formalism for high dose rate (HDR) brachytherapy treatment planning. These algorithms provide enhanced dose calculation accuracy by using the information in the patient's computed tomography images, which allows modeling the patient's geometry, material compositions, and the treatment applicator. Several researchers have investigated the implementation of MBDCAs in HDR brachytherapy for dose optimization, but moving toward using them as primary algorithms for dose calculations is still lagging. Therefore, an overview of up-to-date research is needed to familiarize clinicians with the current status of the MBDCAs for different cancers in HDR brachytherapy. In this paper, we review the MBDCAs for HDR brachytherapy from a dosimetric perspective. Treatment sites covered include breast, gynecological, lung, head and neck, esophagus, liver, prostate, and skin cancers. Moreover, we discuss the current status of implementation of MBDCAs and the challenges.


Asunto(s)
Braquiterapia , Algoritmos , Humanos , Método de Montecarlo , Dosis de Radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
16.
J Contemp Brachytherapy ; 13(2): 179-187, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33897792

RESUMEN

PURPOSE: Dosimetric treatment planning evaluations concerning patient-adapted moulds for iridium-192 high-dose-rate brachytherapy are presented in this report. MATERIAL AND METHODS: Six patients with perinasal skin tumors were treated with individual moulds made of biocompatible epithetic materials with embedded plastic applicators. Treatment plans were optimized with regard to clinical requirements, and dose was calculated using standard water-based TG-43 formalism. In addition, retrospective material-dependent collapsed cone calculations according to TG-186 protocol were evaluated to quantify the limitations of TG-43 protocol for this superficial brachytherapy technique. RESULTS: The dose-volume parameters D90, V100, and V150 of the planning target volumes (PTVs) for TG-43 dose calculations yielded 92.2% to 102.5%, 75.1% to 93.1%, and 7.4% to 41.7% of the prescribed dose, respectively. The max- imum overall dose to the ipsilateral eyeball as the most affected organ at risk (OAR) varied between 8.9 and 36.4 Gy. TG-186 calculations with Hounsfield unit-based density allocation resulted in down by -6.4%, -16.7%, and -30.0% lower average D90, V100, and V150 of the PTVs, with respect to the TG-43 data. The corresponding calculated OAR doses were also lower. The model-based TG-186 dose calculations have considered reduced backscattering due to environmental air as well as the dose-to-medium influenced by the mould materials and tissue composition. The median PTV dose was robust within 0.5% for simulated variations of mould material densities in the range of 1.0 g/cm3 to 1.26 g/cm3 up to 7 mm total mould thickness. CONCLUSIONS: HDR contact BT with individual moulds is a safe modality for routine treatment of perinasal skin tumors. The technique provides good target coverage and OARs' protection, while being robust against small variances in mould material density. Model-based dose calculations (TG-186) should complement TG-43 dose calculations for verification purpose and quality improvement.

17.
Med Phys ; 47(11): 5838-5851, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32970875

RESUMEN

PURPOSE: To investigate the suitability of the microDiamond detector (mDD) type 60019 (PTW-Freiburg, Germany) to measure the anisotropy function F(r,θ) of High Dose Rate (HDR) 192 Ir brachytherapy sources. METHODS: The HDR 192 Ir brachytherapy source, model mHDR-v2r (Elekta AB, Sweden), was placed inside a water tank within a 4F plastic needle. Four mDDs (mDD1, mDD2, mDD3, and mDD4) were investigated. Each mDD was placed laterally with respect to the source, and measurements were performed at radial distances r = 1 cm, 3 and 5 cm, and polar angles θ from 0° to 168°. The Monte Carlo (MC) system EGSnrc was used to simulate the measurements and to calculate phantom effect, energy dependence and volume-averaging correction factors. F(r,θ) was determined according to TG-43 formalism from the detector reading corrected with the MC-based factors and compared to the consensus anisotropy function CON F(r,θ). RESULTS: At 1 cm, the differences between measurements and MC simulations ranged from -0.8% to +0.8% for θ = 0° and from -2.1% to + 2.3% for θ ≠ 0°. At 3 and 5 cm, the differences ranged from +1.4% to +3.9% for θ = 0°, and from -0.4% to +2.9% for θ ≠ 0°. All differences were within the uncertainties (k = 2). At small angles, the phantom effect correction was up to -1.9%. This effect was mainly caused by the air between source and needle tip. The energy correction was angle-independent everywhere. For small angles at 1 cm, the volume-averaging correction was up to -2.9% and became less important for larger angles and distances. The differences of the measured F(r,θ) corrected with the MC-based factors to CON F(r,θ) ranged from -1.0% to +3.4% for mDD1, -2.2% to +4.2% for mDD2, -2.5% to +4.0% for mDD3, and -2.6% to +3.4% for mDD4. All differences were within the uncertainties (k = 2) except one at (3 cm, 0°). For all the mDDs, F(r,0°) was always higher than CON F(r,0°), with average differences of +3.1% (1 cm), +3.6% (3 cm), and +1.9% (5 cm). The inter-detector variability was within 2.9% (1 cm), 1.8% (3 cm), and 3.4% (5 cm). CONCLUSIONS: A reproducible method and experimental setup were presented for measuring and validating F(r,θ) of an HDR 192 Ir brachytherapy source in a water phantom using the mDD. The phantom effect and the volume-averaging need to be taken into account, especially for the smaller distances and angles. Good agreement to CON F(r,θ) was obtained. The discrepancies at (1 cm, 0°), accurately predicted by the MC results, may suggest a reconsideration of CON F(r,θ), at least for this position. The slight overestimations at (3 cm,0°) and (5 cm,0°), both in comparison to CON F(r,θ) and MC results, may be due to an underestimation of the air volume between source and needle tip, dark current, intrinsic over-response of the mDDs, or radiation-induced charge imbalance in the detector's components. The results indicate that the mDD is a valuable tool for measurements with HDR 192 Ir brachytherapy sources and support its employment for the determination and validation of TG-43 parameters of such sources.


Asunto(s)
Braquiterapia , Anisotropía , Alemania , Método de Montecarlo , Radiometría , Dosificación Radioterapéutica , Suecia
18.
Med Phys ; 47(9): 4563-4573, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32686145

RESUMEN

PURPOSE: A prototype 169 Yb source was developed in combination with a dynamic rotating platinum shield system (AIM-Brachy) to deliver intensity modulated brachytherapy (IMBT). The purpose of this study was to evaluate the dosimetric characteristics of the bare/shielded 169 Yb source using Monte Carlo (MC) simulations and perform an independent dose verification using a dosimetry platform based on a multipoint plastic scintillator detector (mPSD). METHODS: The TG-43U1 dosimetric parameters were calculated for the source model using RapidBrachyMCTPS. Real-time dose rate measurements were performed in a water tank for both the bare/shielded source using a custom remote afterloader. For each dwell position, the dose rate was independently measured by the three scintillators (BCF-10, BCF-12, and BCF-60). For the bare source, dose rate was measured at distances up to 3 cm away from the source over a range of 7 cm along the catheter. For the shielded source, measurements were performed with the mPSD placed at 1 cm from the source at four different azimuthal angles ( 0 ∘ , 9 0 ∘ , 18 0 ∘ , and 27 0 ∘ ). RESULTS: The dosimetric parameters were tabulated for the source model. For the bare source, differences between measured and calculated along-away dose rates were generally below 5-10%. Along the transverse axis, deviations were, on average (range), 3.3% (0.6-6.2%) for BCF-10, 1.7% (0.9-2.9%) for BCF-12, and 2.2% (0.3-4.4%) for BCF-60. The maximum dose rate reduction due to shielding at a radial distance of 1 cm was 88.8 ± 1.2%, compared to 83.5 ± 0.5% as calculated by MC. CONCLUSIONS: The dose distribution for the bare/shielded 169 Yb source was independently verified using mPSD with good agreement in regions close to the source. The 169 Yb source coupled with the partial-shielding system is an effective technique to deliver IMBT.


Asunto(s)
Braquiterapia , Método de Montecarlo , Plásticos , Radiometría , Dosificación Radioterapéutica
19.
Med Phys ; 47(9): 4656-4669, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32436344

RESUMEN

PURPOSE: To update the Carleton Laboratory for Radiotherapy Physics (CLRP) TG-43 dosimetry database for low-energy (≤50 keV) photon-emitting low-dose rate (LDR) brachytherapy sources utilizing the open-source EGSnrc application egs_brachy rather than the BrachyDose application used previously for 27 LDR sources in the 2008 CLRP version (CLRPv1). CLRPv2 covers 40 sources ( 103 Pd, 125 I, and 131 Cs). A comprehensive set of TG-43 parameters is calculated, including dose-rate constants, radial dose functions with functional fitting parameters, 1D and 2D anisotropy functions, along-away dose-rate tables, Primary-Scatter separation dose tables (for some sources), and mean photon energies at the surface of the sources. The database also documents the source models which will become part of the egs_brachy distribution. ACQUISITION AND VALIDATION METHODS: Datasets are calculated after a systematic recoding of the source geometries using the egs++ geometry package and its egs_brachy extensions. Air-kerma strength per history is calculated for models of NIST's Wide-Angle Free-Air chamber (WAFAC) and for a point detector located at 10 cm on the source's transverse axis. Full scatter water phantoms with varying voxel resolutions in cylindrical coordinates are used for dose calculations. New statistical uncertainties of source volume corrections for phantom voxels which overlap with brachytherapy sources are implemented in egs_brachy, and all CLRPv2 data include these uncertainties. For validation, data are compared to CLRPv1 and other data in the literature. DATA FORMAT AND ACCESS: Data are available at https://physics.carleton.ca/clrp/egs_brachy/seed_database_v2, http://doi.org/10.22215/clrp/tg43v2. As well as being presented graphically in comparisons to previous calculations, data are available in Excel (.xlsx) spreadsheets for each source. POTENTIAL APPLICATIONS: The database has applications in research, dosimetry, and brachytherapy treatment planning. This comprehensive update provides the medical physics community with more accurate TG-43 dose evaluation parameters, as well as fully benchmarked and described source models which are distributed with egs_brachy.


Asunto(s)
Braquiterapia , Laboratorios , Método de Montecarlo , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
20.
Radiat Oncol ; 15(1): 60, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32151255

RESUMEN

PURPOSE: To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS: We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS: TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS: In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.


Asunto(s)
Algoritmos , Braquiterapia , Carcinoma Hepatocelular/radioterapia , Neoplasias Colorrectales/radioterapia , Neoplasias Hepáticas/radioterapia , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Masculino , Modelos Estadísticos , Método de Montecarlo , Pronóstico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA