Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Prog ; 106(3): 368504231184320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37439013

RESUMEN

Current studies suggest that the abnormal alteration of brain lipid binding protein (BLBP) might participate in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, the detailed understanding of ALS pathogenesis been yet to be elucidated. Therefore, this research intended to explore the potential effects of BLBP in ALS. The observation and analysis of BLBP-altered features in various anatomical areas and different spinal segments was conducted at the pre-onset, onset, and progression stages of Tg(SOD1*G93A)1Gur (TG) mice and the same periods of age-matched SOD1 wild-type (WT) mice by fluorescence immunohistochemistry and western blotting. BLBP-positive cells were comprehensively distributed in various spinal anatomical areas, especially in both the anterior and posterior horn, around the central canal and in anterior, lateral, and posterior funiculi. Overall, BLBP expression tended to increase from the pre-onset to the onset to the progression stages of the same periods of age-matched WT mice. Furthermore, in TG mice, BLBP expression in the entire spinal cord significantly increased from onset to the progression stage. BLBP was expressed in neurons, astrocytes, and radial glial cells, and at the early and late stages of neural precursor cells (NPCs) and was predominantly distributed outside the cell nucleus. The increase of BLBP-positive cells was closely related to neural cell reduction in TG mice. The distribution and increased expression of BLBP among the cervical, thoracic, and lumbar segments of the spinal cord might participate in the development of ALS and exert potential effects in the pathogenesis of ALS by regulating NPCs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína de Unión a los Ácidos Grasos 7 , Células-Madre Neurales , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Proteína de Unión a los Ácidos Grasos 7/genética , Superóxido Dismutasa-1
2.
Neural Regen Res ; 18(7): 1527-1534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36571358

RESUMEN

Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur (TG) amyotrophic lateral sclerosis mouse model. However, most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown. In this study, we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis. Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting, and cell proliferation and proteins (TAR DNA binding protein 43, superoxide dismutase 1, and Bax) were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells. We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins. Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons. Amyotrophic lateral sclerosis mice were examined at three stages: preonset (60-70 days), onset (90-100 days) and progression (120-130 days). The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage. The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group, whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage. The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group. The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage. The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage, significantly decreased at the onset stage, and significantly increased at the progression stage compared with the control group. heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage. After heterogenous nuclear ribonucleoprotein G gene silencing, PC12 cell survival was lower than that of control cells. Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells. Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.

3.
Cell Mol Neurobiol ; 42(4): 1035-1046, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33236288

RESUMEN

Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células-Madre Neurales , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
4.
Neural Regen Res ; 17(7): 1609-1616, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34916448

RESUMEN

The development of amyotrophic lateral sclerosis (ALS) may be related to the abnormal alterations of multiple proteins. Our previous study revealed that the expression of phosphoinositide-3-kinase regulatory subunit 4 (PIK3R4) was decreased in ALS. However, the role of PIK3R4 in ALS pathogenesis remains unknown. This study was the first to find that transfection of PC12 cells with small interfering RNA against the PIK3R4 gene significantly decreased the expression levels of PIK3R4 and the autophagy-related proteins p62 and LC3. Additionally, in vivo experiments revealed that the PIK3R4 protein was extensively expressed in the anterior horn, posterior horn, central canal, and areas surrounding the central canal in cervical, thoracic, and lumbar segments of the spinal cord in adult mice. PIK3R4 protein was mainly expressed in the neurons within the spinal lumbar segments. PIK3R4 and p62 expression levels were significantly decreased at both the pre-onset and onset stages of ALS disease in Tg(SOD1*G93A)1Gur mice compared with control mice, but these proteins were markedly increased at the progression stage. LC3 protein expression did not change during progression of ALS. These findings suggest that PIK3R4 likely participates in the prevention of ALS progression. This study was approved by the Ethics Committee for Animal Care and Use of Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University (approval No. 2020025) on March 26, 2020.

5.
Mol Neurobiol ; 58(4): 1723-1737, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33242187

RESUMEN

The pathogenesis of amyotrophic lateral sclerosis (ALS) might exist some relationships with the abnormal lipidomic metabolisms. Therefore, we observed and analyzed the alteration of perilipin 4 (PLIN 4) distribution in the anterior horns (AH); the central canals (CC) and its surrounding gray matter; the posterior horns (PH); and the anterior, lateral, and posterior funiculus (AF, LF, and PF) of the cervical, thoracic, and lumbar segments, as well as the alteration of PLIN 4 expression in the entire spinal cords at the pre-onset, onset, and progression stages of Tg(SOD1*G93A)1Gur (TG) mice and the same period of wild-type(WT) by fluorescent immunohistochemistry, the Western blot, and the image analysis. Results showed that the PLIN 4 distributions in the spinal AH, CC and its surrounding gray matter, PH, AF, and PF of the cervical, thoracic, and lumbar segments in the TG mice at the pre-onset, onset, and progression stages significantly increased compared with those at the same periods of WT mice; the gray matter was especially significant. No significant changes were detected in the LF. PLIN 4 extensively distributed in the neurons and the proliferation neural cells. The PLIN 4 distributions significantly gradually increased from the pre-onset to onset to progression stages, and significantly correlated with the gradual increase death of neural cells. Total PLIN 4 expression in the spinal cords of TG mice significantly increased from the pre-onset, to onset, and to progression stages compared with that in the WT mice. Our data suggested that the PLIN 4 distribution and expression alterations might participate in the death of neural cells in the pathogenesis of ALS through modulating the lipidomic metabolisms and the neural cell proliferation.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Perilipina-4/metabolismo , Envejecimiento/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Sustancia Gris/metabolismo , Sustancia Gris/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA