Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116853, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137468

RESUMEN

The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Bifenilos Polibrominados , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Bifenilos Polibrominados/toxicidad , Xantófilas , Proteínas Bacterianas/genética
2.
EFSA J ; 22(7): e8859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010865

RESUMEN

The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 µg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.

3.
J Environ Sci (China) ; 145: 97-106, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844327

RESUMEN

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 µg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 µg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattern of HBCDs in the surface sediments from rivers were 41.73%-62.33%, 7.89%-25.54%, and 18.76%-40.65% for α-, ß-, and γ-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for α-, ß-, and γ-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control.


Asunto(s)
Caenorhabditis elegans , Monitoreo del Ambiente , Retardadores de Llama , Sedimentos Geológicos , Hidrocarburos Bromados , Contaminantes Químicos del Agua , Animales , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , China , Caenorhabditis elegans/efectos de los fármacos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Hidrocarburos Bromados/análisis , Hidrocarburos Bromados/toxicidad , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/análisis
4.
Sci Total Environ ; 938: 173527, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38802019

RESUMEN

Brominated flame retardants (BFRs) exhibit excellent flame retardant properties and are widely used in various industries. Among the common BFRs, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) pose substantial ecological and human health risks due to their extensive application and long-range transport. This study established 131 sample collection sites along the coast of the South China Sea (SCS) in Guangdong Province to assess the concentration, distribution, inventory, and ecological risk of TBBPA and HBCDs in surface sediments. The concentrations of TBBPA in SCS sediments ranged from < limit of detection (LOD) to 80 µg/kg dry weight (dw), and those of HBCDs from < LOD to 18 µg/kg dw. The diastereoisomers of HBCDs (α-, ß-, and γ-HBCD) in the sediment samples accounted for 36 %, 13 %, and 51 %, respectively. Human activities, particularly those associated with nearby electronic waste disassembly and textile and garment industries, considerably influenced the dispersion of TBBPA and HBCDs. The inventories of TBBPA and HBCDs in Guangdong Province's SCS were estimated to be 3.2 × 105 kg and 7.2 × 104 kg, respectively. The average risk quotient values ranged from <0.01 to 0.016, indicating a low to negligible environmental risk. This study provides deeper insights into the distribution and scientific significance of HBCDs and TBBPA in SCS sediment samples, elucidates the current state of BFR contamination, and offers recommendations for future research on environmental safety and human health in the region.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Sedimentos Geológicos , Hidrocarburos Bromados , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Bifenilos Polibrominados/análisis , Hidrocarburos Bromados/análisis , China , Sedimentos Geológicos/química , Medición de Riesgo , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Contaminantes Químicos del Agua/análisis
5.
Chemosphere ; 359: 142290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723691

RESUMEN

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Asunto(s)
Biotransformación , Retardadores de Llama , Helianthus , Bifenilos Polibrominados , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Catalasa/metabolismo
6.
Environ Res ; 256: 119060, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38751001

RESUMEN

Black phosphorus nanosheets (BPNs)/CdS heterostructure was successfully synthesized via hydrothermal method. The experimental results indicated that BPNs modified the surface of CdS nanoparticles uniformly. Meanwhile, the BPNs/CdS heterostructure exhibited a distinguished high rate of photocatalytic activity for Tetrabromobisphenol A (TBBPA) degradation under visible light irradiation (λ > 420 nm), the kinetic constant of TBBPA degradation reached 0.0261 min-1 was approximately 5.68 and 9.67 times higher than that of CdS and P25, respectively. Moreover, superoxide radical (•O2-) is the main active component in the degradation process of TBBPA (the relative contribution is 91.57%). The photocatalytic mechanism and intermediates of the TBBPA was clarified, and a suitable model and pathway for the degradation of TBBPA were proposed. The results indicated that the toxicities of some intermediates were higher than the parent pollutant. This research provided an efficient approach by a novel photocatalyst for the removal of TBBPA from wastewater, and the appraisal methods for the latent risks from the intermediates were reported in this paper.


Asunto(s)
Fósforo , Bifenilos Polibrominados , Bifenilos Polibrominados/química , Bifenilos Polibrominados/efectos de la radiación , Fósforo/química , Compuestos de Cadmio/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Catálisis , Fotólisis
7.
Chemosphere ; 361: 142491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821130

RESUMEN

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp. Employing a suite of experimental methodologies, including Raman spectroscopy, contact angle measurements, electron microscopy, and chromatography, we examined the physicochemical interplay between the GFNs and TBBPA. The toxicity potentials of individual constituents and their binary combinations were assessed through growth inhibition assays, quantifying reactive oxygen species (ROS) generation and malondialdehyde (MDA) production, photosynthetic activity analyses, and various biochemical assays. The toxicity of TBBPA and graphene-based nanomaterials (GFNs) was examined individually and in combinations. Both pristine TBBPA and GFNs showed dose-dependent toxicity. While lower TBBPA concentrations exacerbated toxicity in binary mixtures, higher TBBPA levels reduced the toxic effects compared to pristine TBBPA treatments. The principal mechanism underlying toxicity was ROS generation, resulting in membrane damage and perturbation of photosynthetic parameters. Cluster heatmap and Pearson correlation were employed to assess correlations between the biological parameters. Finally, ecological risk assessment was undertaken to evaluate environmental impacts of the individual components and the mixture in the algae.


Asunto(s)
Chlorella , Retardadores de Llama , Grafito , Microalgas , Nanoestructuras , Bifenilos Polibrominados , Retardadores de Llama/toxicidad , Bifenilos Polibrominados/toxicidad , Grafito/toxicidad , Chlorella/efectos de los fármacos , Nanoestructuras/toxicidad , Nanoestructuras/química , Microalgas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
8.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599396

RESUMEN

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Asunto(s)
Ecotoxicología , Contaminantes Ambientales , Microplásticos , Bifenilos Polibrominados , Humanos , Monitoreo del Ambiente , Retardadores de Llama
9.
Chemosphere ; 353: 141378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442777

RESUMEN

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Femenino , Masculino , Ratas , Animales , Éter , Ratas Sprague-Dawley , Éteres , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/análisis , Éteres de Etila , Neurotransmisores , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis
10.
Toxicology ; 503: 153769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437912

RESUMEN

Research and regulatory efforts in toxicology are increasingly focused on the development of suitable non-animal methodologies for human health risk assessment. In this work we used human intestinal Caco-2 and HT29/MTX cell lines to address the potential risks of mixtures of the emerging contaminants tetrabromobisphenol A (TBBPA) and commercial polystyrene nanoparticles (PSNPs). We employed different in vitro settings to evaluate basal cytotoxicity through three complementary endpoints (metabolic activity, plasmatic, and lysosomal membrane integrity) and the induction of the oxidative stress and DNA damage responses with specific endpoints. Although no clear pattern was observed, our findings highlight the predominant impact of TBBPA in the combined exposures under subcytotoxic conditions and a differential behavior of the Caco-2 and HT29/MTX co-culture system. Distinctive outcomes detected with the mixture treatments include reactive oxygen species (ROS) increases, disturbances of mitochondrial inner membrane potential, generation of alkali-sensitive sites in DNA, as well as significant changes in the expression levels of relevant DNA and oxidative stress related genes.


Asunto(s)
Nanopartículas , Bifenilos Polibrominados , Poliestirenos , Humanos , Poliestirenos/toxicidad , Células CACO-2 , Estrés Oxidativo , Nanopartículas/toxicidad , ADN
11.
J Agric Food Chem ; 72(12): 6744-6753, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498411

RESUMEN

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.


Asunto(s)
Melaninas , Nanopartículas , Bifenilos Polibrominados , Animales , Humanos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Nanopartículas/química
12.
Gen Comp Endocrinol ; 350: 114469, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360373

RESUMEN

Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.


Asunto(s)
Retardadores de Llama , Pez Cebra , Humanos , Ratas , Animales , Pez Cebra/metabolismo , Éteres/análisis , Éteres/metabolismo , Análisis de Secuencia de ARN , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , Retardadores de Llama/metabolismo
13.
J Environ Manage ; 354: 120302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401492

RESUMEN

Tetrabromobisphenol A (TBBPA) that widely exists in soil and poses a potential threat to ecological environment urgently needs economically efficient remediation techniques. This study utilized both homogeneous Fe2⁺ solution and heterogeneous iron-based nanomaterials (chemically synthesized nano zero-valence iron (nZVI) and green-synthesized iron nanoparticles (G-Fe NPs)) to activate persulfate (PS) and assess their efficacy in degrading TBBPA in soil. The results demonstrate the superior performance of heterogeneous catalytic systems (WG-Fe NPs/PS (82.07%) and WnZVI/PS (78.32%)) over homogeneous catalytic system (WFe2+/PS (71.69%)), In addition, G-Fe NPs and nZVI effectively controlled the slow release of Fe2+. The optimization analysis using response surface methodology (RSM) reveal the remarkable significance of the experimental model based on the box-behnken design. RSM show that G-Fe NPs/PS exhibited optimal process parameters and predicted the maximum soil TBBPA degradation efficiency reaching 98.77%. The results of density functional theory calculations suggest that C-Br are the primary targets for electrophilic substitution reactions. Based on the f0 value and △G, the degradation pathway of TBBPA is inferred to involve a sequential debromination process, followed by the cleavage of intermediate carbon-carbon bonds and subsequent oxidation reactions. Hence, G-Fe NPs/PS not only facilitate waste resource utilization but also hold significant application potential.


Asunto(s)
Hierro , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Hierro/química , Suelo , Oxidación-Reducción , Carbono , Contaminantes Químicos del Agua/química
14.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38382014

RESUMEN

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Bifenilos Polibrominados , Masculino , Animales , Ratones , Retardadores de Llama/toxicidad , Éter , Bioacumulación , Semen , Hidrocarburos Bromados/toxicidad , Bifenilos Polibrominados/toxicidad , Éteres , Éteres de Etila
15.
Rev Environ Health ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386608

RESUMEN

Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.

16.
J Hazard Mater ; 465: 133390, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38163409

RESUMEN

Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.


Asunto(s)
Contaminantes Ambientales , Perciformes , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Animales , Humanos , Cadena Alimentaria , Bioacumulación , Ecosistema , Pez Cebra/metabolismo , Biotransformación , Perciformes/metabolismo , Contaminantes Ambientales/análisis , Éteres , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 465: 133469, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219585

RESUMEN

The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-ß-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.


Asunto(s)
Phanerochaete , Bifenilos Polibrominados , Biotransformación , Phanerochaete/metabolismo , Bifenilos Polibrominados/metabolismo , Glicosiltransferasas/metabolismo
18.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242263

RESUMEN

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Asunto(s)
Carpas , Ferroptosis , Bifenilos Polibrominados , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor Toll-Like 4/genética , Carpas/metabolismo , Branquias , Polifenoles/farmacología , Polifenoles/metabolismo , Transducción de Señal , Proteínas de Peces , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Apoptosis , Té/metabolismo
19.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182911

RESUMEN

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Asunto(s)
Clorofenoles , Hígado , Microsomas Hepáticos , Bifenilos Polibrominados , Humanos , Animales , Ratas , Ratones , Perros , Porcinos , Porcinos Enanos/metabolismo , Microsomas Hepáticos/metabolismo , Hígado/metabolismo , Glucuronosiltransferasa/metabolismo , Animales de Laboratorio/metabolismo , Isoformas de Proteínas/metabolismo , Haplorrinos/metabolismo , Cinética , Glucurónidos/metabolismo , Uridina Difosfato/metabolismo
20.
Sci Total Environ ; 912: 169175, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38065503

RESUMEN

Tetrabromobisphenol A (TBBPA), as a widely used brominated flame retardant, has been implicated as a potential neurotoxicant. However, the mechanism of TBBPA-induced neurotoxicity has not been fully elucidated yet. In this study, using mouse hippocampal neuron cell HT22 as the in vitro model, the neuronal cytotoxicity of TBBPA and the mechanism by focusing on mitophagy have been studied. We found that neuronal cytotoxic effects were indeed induced by TBBPA exposure at concentrations of >20 µM for 24 h, including decreased cell viability (to 92.38 % at 20 µM; 18.25 % at 80 µM), enhanced ROS (enhanced 53.26 % at IC50 of 60 µM, compared with that in the control group) and mitochondrial ROS (mtROS) levels (enhanced 24.12 % at 60 µM), reduced mitochondrial membrane potential (MMP) (decreased 33.60 % at 60 µM). As a protective mechanism in cells, autophagy was initiated; however, mitophagy was inhibited, where PINK1 (PINK1-Parkin activation is critical in the depolarized MMP-induced mitophagy) expression was found to be repressed and decreased, further leading to the failure of Parkin recruitment to the damaged mitochondria. Mitophagy activator, nicotinamide mononucleotide (ß-NMN) that activates the PINK1-Parkin pathway, could alleviate TBBPA-induced mitophagy deficiency and further reduce the neuronal cytotoxicity, demonstrating that TBBPA-induced PINK1-Parkin-mediated mitophagy deficiency contributed to the neuronal cytotoxicity. Furthermore, we found TBBPA caused the upregulation of Atf3 (activating transcription factor 3) gene transcription and expression levels, alongside reduced Pink1 levels; whereas enhanced Pink1 transcript levels were observed after ATF3 depletion even under TBBPA treatment, demonstrating TBBPA-induced overexpression of ATF3 should be responsible for the reduced PINK1 expression. Therefore, for the first time, here we demonstrate that TBBPA can inhibit PINK1-Parkin-mediated mitophagy via upregulating ATF3 expression, which further contributes to its neuronal cytotoxicity. This study should be able to improve our understanding of the mechanism of TBBPA-induced neuronal cytotoxicity.


Asunto(s)
Mitofagia , Bifenilos Polibrominados , Proteínas Quinasas , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA