Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Oncol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090849

RESUMEN

Glioblastoma (GB) is the most common and fatal type of primary malignant brain tumor for which effective therapeutics are still lacking. GB stem cells, with tumor-initiating and self-renewal capacity, are mostly responsible for GB malignancy, representing a crucial target for therapies. The TP73 gene, which is highly expressed in GB, gives rise to the TAp73 isoform, a pleiotropic protein that regulates neural stem cell biology; however, its role in cancer has been highly controversial. We inactivated TP73 in human GB stem cells and revealed that TAp73 is required for their stemness potential, acting as a regulator of the transcriptional stemness signatures, highlighting TAp73 as a possible therapeutic target. As proof of concept, we identified a novel natural compound with TAp73-inhibitory capacity, which was highly effective against GB stem cells. The treatment reduced GB stem cell-invasion capacity and stem features, at least in part by TAp73 repression. Our data are consistent with a novel paradigm in which hijacking of p73-regulated neurodevelopmental programs, including neural stemness, might sustain tumor progression, pointing out TAp73 as a therapeutic strategy for GB.

2.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739802

RESUMEN

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Asunto(s)
Proliferación Celular , Dominios Proteicos , Activación Transcripcional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimiento Celular/genética , Mutación , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
3.
Biomedicines ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255305

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized by a marked desmoplastic tumor stroma that is formed under the influence of transforming growth factor (TGF)-ß. Data from mouse models of pancreatic cancer have revealed that transcriptionally active p73 (TAp73) impacts the TGF-ß pathway through activation of Smad4 and secretion of biglycan (Bgn). However, whether this pathway also functions in human PDAC cells has not yet been studied. Here, we show that RNA interference-mediated silencing of TAp73 in PANC-1 cells strongly reduced the stimulatory effect of TGF-ß1 on BGN. TAp73-mediated regulation of BGN, and inhibition of TGF-ß signaling through a (Smad-independent) ERK pathway, are reminiscent of what we previously observed for the small GTPase, RAC1b, prompting us to hypothesize that in human PDAC cells TAp73 and RAC1b are part of the same tumor-suppressive pathway. Like TAp73, RAC1b induced SMAD4 protein and mRNA expression. Moreover, siRNA-mediated knockdown of RAC1b reduced TAp73 mRNA levels, while ectopic expression of RAC1b increased them. Inhibition of BGN synthesis or depletion of secreted BGN from the culture medium reproduced the promigratory effect of RAC1b or TAp73 silencing and was associated with increased basal and TGF-ß1-dependent ERK activation. BGN also phenocopied the effects of RAC1b or TAp73 on the expression of downstream effectors, like the EMT markers E-cadherin, Vimentin and SNAIL, as well as on negative regulation of the ALK2-SMAD1/5 arm of TGF-ß signaling. Collectively, we showed that tumor-suppressive TAp73-Smad4-Bgn signaling also operates in human cells and that RAC1b likely acts as an upstream activator of this pathway.

4.
Elife ; 122023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650871

RESUMEN

TP73, a member of the p53 family, is expressed as TAp73 and ΔNp73 along with multiple C-terminal isoforms (α-η). ΔNp73 is primarily expressed in neuronal cells and necessary for neuronal development. Interestingly, while TAp73α is a tumor suppressor and predominantly expressed in normal cells, TAp73 is found to be frequently altered in human cancers, suggesting a role of TAp73 C-terminal isoforms in tumorigenesis. To test this, the TCGA SpliceSeq database was searched and showed that exon 11 (E11) exclusion occurs frequently in several human cancers. We also found that p73α to p73γ isoform switch resulting from E11 skipping occurs frequently in human prostate cancers and dog lymphomas. To determine whether p73α to p73γ isoform switch plays a role in tumorigenesis, CRISPR technology was used to generate multiple cancer cell lines and a mouse model in that Trp73 E11 is deleted. Surprisingly, we found that in E11-deificient cells, p73γ becomes the predominant isoform and exerts oncogenic activities by promoting cell proliferation and migration. In line with this, E11-deficient mice were more prone to obesity and B-cell lymphomas, indicating a unique role of p73γ in lipid metabolism and tumorigenesis. Additionally, we found that E11-deficient mice phenocopies Trp73-deficient mice with short lifespan, infertility, and chronic inflammation. Mechanistically, we showed that Leptin, a pleiotropic adipocytokine involved in energy metabolism and oncogenesis, was highly induced by p73γ,necessary for p73γ-mediated oncogenic activity, and associated with p73α to γ isoform switch in human prostate cancer and dog lymphoma. Finally, we showed that E11-knockout promoted, whereas knockdown of p73γ or Leptin suppressed, xenograft growth in mice. Our study indicates that the p73γ-Leptin pathway promotes tumorigenesis and alters lipid metabolism, which may be targeted for cancer management.


Asunto(s)
Transformación Celular Neoplásica , Leptina , Proteína Tumoral p73 , Animales , Perros , Humanos , Ratones , Carcinogénesis/genética , Exones , Leptina/genética , Obesidad , Neoplasias de la Próstata , Proteína Tumoral p73/genética , Linfoma
5.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37568607

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease due to early metastatic spread, late diagnosis and the lack of efficient therapies. A major driver of cancer progression and hurdle to successful treatment is transforming growth factor (TGF)-ß. Recent data from pancreatic cancer mouse models showed that transcriptionally active p73 (TAp73), a p53 family member, inhibits tumor progression through promoting tumor suppressive canonical TGF-ß/Smad signaling, while preventing non-canonical TGF-ß signaling through extracellular signal-regulated kinases (ERK)1/2. Here, we studied whether this mechanism also operates in human PDAC. Using the PDAC-derived tumor cell lines PANC-1, HPAFII and L3.6pl, we showed that TAp73 induces the expression of the epithelial marker and invasion suppressor E-cadherin and the common-mediator Smad, SMAD4, while at the same time suppressing expression of the EMT master regulator SNAIL and basal and TGF-ß1-induced activation of ERK1 and ERK2. Using dominant-negative and RNA interference-based inhibition of SMAD4 function, we went on to show that inhibition of ERK activation by TAp73 is mediated through SMAD4. Intriguingly, both SMAD4 and the α isoform of TAp73-but not the ß isoform-interfered with cell migration, as shown by xCELLigence technology. Our findings highlighted the role of TAp73-SMAD4 signaling in tumor suppression of human PDAC and identified direct inhibition of basal and TGF-ß-stimulated pro-invasive ERK activation as an underlying mechanism.

6.
J Cancer ; 14(11): 1946-1955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497416

RESUMEN

Colorectal cancer (CRC) is the fourth most diagnosed cancer worldwide. 43% of CRCs harbor p53 mutations. The tumor suppressor p53 induces cell growth arrest and/or apoptosis in response to stress, including endoplasmic reticulum (ER) stress. It has been documented that the p53 gene is mutated in more than 50% of human tumors and loses its tumor suppressor function, suggesting that ER stress-induced apoptosis might not rely on p53. In this study, we found that activation of ER stress promotes p53 null colon cancer cell apoptosis concomitant with an increased level of the TAp73α protein, a homologue of p53 in vitro and in vivo. Knockdown of TAp73α partially restores ER stress-induced apoptosis, indicating that ER stress stimulates apoptosis in a manner dependent on TAp73α, but not p53. Furthermore, we found that ER stress activates TAp73α mRNA and protein expression through PERK signalling, a branch of the unfolded protein response (UPR). Moreover, PERK promotes TAp73α expression by upregulating the expression of the transcription factor ATF4. ATF4 directly activates the transcription of TAp73α. Consistent with this finding, ATF4 knockdown inhibited PERK- or ER stress-induced TAp73α expression. Our findings reveal that ER stress activates TAp73α to promote colon cancer cell apoptosis via the PERK-ATF4 signalling. Therefore, prolonged ER stress or upregulation of TAp73α might be a therapeutic strategy for colon cancer.

7.
J Ethnopharmacol ; 302(Pt A): 115867, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36341818

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi-Yanzong-Wan (WZYZW) is a classic Chinese herbal preparation, which has a significant clinical efficacy in tonifying the kidney and benefiting the sperm, and is widely used in the treatment of oligoasthenospermia with a long history. TAp73 inhibition results in the decrease of sperm quality, but the therapeutic mechanism of WZYZW on oligoasthenospermia caused by TAp73 gene inhibition remains elusive. AIMS OF STUDY: The purpose of this study is to investigate whether TAp73 suppression leads to oligoasthenospermia and the application of WZYZW treatment in condition of TAp73 suppression. METHODOLOGY: C57BL/6 male mice were injected with Pifithrin-α (2.5 mg/kg) intraperitoneally for 30 days to induce TAp73 suppression model, with WZYZW at 1.0, 2.0 and 4.0 g/kg were administrated in parallel. The blood, testis and epididymis were collected, with organ coefficient calculated. Makler sperm counter was used to analyze the density, motility, survival and malformation rate of sperm. Apoptosis of sperm was analyzed by flow cytometry. Serum hormone levels were determined using ELISA. HE staining and transmission electron microscopy (TEM) were used to observe histopathological changes of testis in blood-testis barrier (BTB), ectoplasmic specialization (ES) and other cell junctions. Expressions of cell adhesion factors including TAp73, Integrin-α6, N-cadherin, Nectin-2 and Occludin were determined by RT-PCR and western blotting. RESULTS: Compared to control mice, TAp73 inhibition dramatically decreased the epididymal coefficient, sperm quality, and serum testosterone (T) level, while increasing apoptosis in sperm in mice. HE staining and TEM showed that the tight junction (TJ) and apical ES structure were seriously abnormal in the testis in mice with TAp73 inhibition. Additionally, the expression of Occludin protein was elevated, while that of TAp73, Integrin-α6, N-cadherin, and Nectin-2 reduced in model mice. WZYZW treatment ameliorated testicular spermatogenic dysfunctions in TAp73 suppressed mice, restoring the decreased sperm quality, serum T level and testicular histopathological changes of TJ and ES, as well as decreasing sperm malformation rate and apoptosis. Moreover, WZYZW reversed the expressions of Occludin, TAp73, Integrin-α6, N-cadherin and Nectin-2 in TAp73 suppressed mice. CONCLUSIONS: By impairing spermatogenesis and maturation, TAp73 inhibition led to oligoasthenospermia in mice. WZYZW could rescue the oligoasthenospermia associated with TAp73 inhibition via affecting the dynamic remodeling of cellular junctions in testicular tissues in mice.


Asunto(s)
Semen , Testículo , Masculino , Ratones , Animales , Nectinas/metabolismo , Ocludina/metabolismo , Ratones Endogámicos C57BL , Testículo/metabolismo , Espermatogénesis , Uniones Intercelulares , Cadherinas/genética , Cadherinas/metabolismo , Integrinas/metabolismo
8.
Anticancer Res ; 42(1): 483-491, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34969758

RESUMEN

BACKGROUND/AIM: Pancreatic cancer is one of the most devastating malignancies worldwide. Because of the disappointing outcome of traditional treatment, new drug candidates are being investigated. This study analysed the effect of eupatilin on pancreatic cancer cells. MATERIALS AND METHODS: Cell viability assay, western blot, siRNA transfection, 2-deoxyglucose uptake assay, AMP/ADP/ATP assay, and fluorescent activated cell sorting were performed. RESULTS: Eupatilin decreased cell viability and activated AMPK in MIA-PaCa2 cells. Eupatilin decreased glucose uptake in pancreatic cancer, which led to cell starvation and AMPK activation. It is well known that AMPK induces p21 and cell cycle arrest by activating p53. In MIA-PaCa2 cells, p53 is mutated and wild-type p53 protein is suppressed. Treatment with eupatilin induced p21 expression but inhibited the expression of mutated p53. Eupatilin activated Tap73, a p53 family member, which can substitute wild-type p53's role. CONCLUSION: Eupatilin shows an anticancer effect against pancreatic cancer cells via glucose uptake inhibition, AMPK activation, and cell cycle arrest.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Flavonoides/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteína Tumoral p73/genética , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Activación Transcripcional/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
9.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202306

RESUMEN

The p53 family has been widely studied for its role in various physiological and pathological processes. Imbalance of p53 family proteins may contribute to developmental abnormalities and pathologies in humans. This family exerts its functions through a profusion of isoforms that are generated by different promoter usage and alternative splicing in a cell type dependent manner. In particular, the Trp73 gene gives rise to TA and DN-p73 isoforms that confer p73 a dual nature. The biological relevance of p73 does not only rely on its tumor suppression effects, but on its pivotal role in several developmental processes. Therefore, the generation of cellular models that allow the study of the individual isoforms in a physiological context is of great biomedical relevance. We generated specific TA and DN-p73-deficient mouse embryonic stem cell lines using the CRISPR/Cas9 gene editing system and validated them as physiological bona fide p73-isoform knockout models. Global gene expression analysis revealed isoform-specific alterations of distinctive transcriptional networks. Elimination of TA or DN-p73 is compatible with pluripotency but prompts naïve pluripotent stem cell transition into the primed state, compromising adequate lineage differentiation, thus suggesting that differential expression of p73 isoforms acts as a rheostat during early cell fate determination.

10.
Cancers (Basel) ; 13(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066954

RESUMEN

The early diagnosis of colorectal cancer is a key factor in the overall survival of the patients. The actual screening programs include different approaches with significant limitations such as unspecificity, high invasiveness, and detection at late stages of the disease. The specific content of extracellular vesicles derived from malignant cells may represent a non-invasive technique for the early detection of colorectal cancer. Here, we studied the mRNA levels of ΔNp73, TAp73, and Δ133p53 in plasma-derived extracellular vesicles from healthy subjects (n = 29), individuals with premalignant lesions (n = 49), and colorectal cancer patients (n = 42). Extracellular vesicles' ΔNp73 levels were already significantly high in subjects with premalignant lesions. Δ133p53 levels were statistically increased in colorectal cancer patients compared to the other two groups and were associated with patients' survival. Remarkably, TAp73 mRNA was not detected in any of the individuals. The evaluation of ΔNp73, Δ133p53 and CEA sensitivity, specificity and AUC values supports ΔNp73 as a better early diagnosis biomarker and CEA as the best to identify advanced stages. Thus, low levels of CEA and a high content of ΔNp73 may identify in screening programs those individuals at higher risk of presenting a premalignant lesion. In addition, Δ133p53 emerges as a potential prognosis biomarker in colorectal cancer.

11.
Cancers (Basel) ; 13(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668566

RESUMEN

Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73ß (TAp73ß) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73ß-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73ß caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73ß had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73ß upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73ß may promote malignant dedifferentiation of HCC cells.

12.
Animal Model Exp Med ; 4(4): 351-358, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34977486

RESUMEN

Background: Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. TAp73 is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on TAp73 gene suppression. Methods: Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (TAp73 inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested. Results: Sperm density, motility, and the relative protein and mRNA expression of TAp73 and Nectin 2 were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of ZO-1. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group. Conclusion: The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of TAp73 genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.


Asunto(s)
Oligospermia , Espermatogénesis , Animales , Epidídimo , Masculino , Ratones , Oligospermia/genética , Células de Sertoli , Espermatogénesis/genética , Espermatozoides
13.
Pharmacol Res ; 162: 105245, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33069756

RESUMEN

p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.


Asunto(s)
Neoplasias/metabolismo , Proteína Tumoral p73/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Proteína Tumoral p73/química , Proteína p53 Supresora de Tumor/metabolismo
14.
Biochem Biophys Res Commun ; 530(4): 686-691, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32771361

RESUMEN

Casein kinase 2 (CK2) has become a potential therapeutic target in gastric cancer; however, the underlying mechanism remains incompletely understood. TAp73, a structural homolog of the tumor suppressor p53, acts as a critical regulator of the Warburg effect. Recent study reveals that aberrant CK2 signaling is able to inhibit TAp73 function. Here we determine that TAp73 is overexpressed in AGS-1 but not in SNU-5 gastric cancer cell line as compared with normal gastric cells. In addition, we show that TAp73 expression is required for the maintenance of glucose uptake and lactate release in AGS-1 but not in SNU-5 gastric cancer cells. Importantly, the use of CX-4945, a selective inhibitor of protein kinase CK2, inhibits cell growth and invasion, and promotes cell apoptosis in AGS-1 with decreased TAp73 expression as well as downregulated glucose uptake and lactate release. Although TAp73 knockdown resulted in significant decreases in TAp73 expressions in SNU-5 cell line, no differences in glucose uptake and lactate release were observed between SNU-5 and normal gastric cells. Moreover, TAp73 gene overexpression promotes glucose uptake and lactate release and abolishes the anti-cancer effects of CX-4945 in gastric cancer cell line AGS-1. The impacts of CX-4945 on glycolysis and tumorigenesis were strongly limited in SNU-5 gastric cancer cell line. These findings suggest that CX-4945 elicits an anti-Warburg effects in gastric cancer overexpressing Tap73 and inhibits gastric tumorigenesis.


Asunto(s)
Anticarcinógenos/farmacología , Quinasa de la Caseína II/antagonistas & inhibidores , Naftiridinas/farmacología , Fenazinas/farmacología , Neoplasias Gástricas/prevención & control , Proteína Tumoral p73/genética , Efecto Warburg en Oncología/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína Tumoral p73/metabolismo
15.
Cancer Med ; 9(12): 4371-4385, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349184

RESUMEN

There are three subtypes of undifferentiated human conventional osteosarcoma (HCOS): osteoblastic osteosarcoma (OOS), chondroblastic osteosarcoma (COS), and fibroblastic osteosarcoma (FOS). HCOS also exhibits heterogeneous pathological maldifferentiation in individual patients. Currently, the mechanism regulating HCOS differentiation remains unclear, and therapies are ineffective. Osteopontin (OPN) and osteocalcin (OCN) are markers of osteoblast maturation, and their expression is inhibited in HCOS. A previous study found that PLK2 inhibited TAp73 phosphorylation and consequent anti-OS function of TAp73 in OS cells with enriched TAp73. TAp73 was also reported to regulate bone cell calcification. Here, OOS was found to have higher TAp73 levels and PLK2 expression than those in COS, which is correlated with HCOS maldifferentiation according to Spearman analysis and affects patient prognosis according to Kaplan-Meier survival analysis. In the conventional OS cell-line Saos2 and in patient-derived xenograft OS (PDX-OS) cells, increased PLK2 expression owing to abundant TAp73 levels affected OPN and OCN content as measured by RT-PCR and Western blotting, and alizarin red staining showed that PLK2 affected calcium deposition in OS cells. In addition, PLK2 inhibition in PDX-OS cells prohibited clone formation, as indicated by a clonogenic assay, and sensitized OS cells to cisplatin (CDDP) (which consequently limited proliferation), as shown by the CCK-8 assay. In an established PDX animal model with abundant TAp73 levels, PLK2 inhibition or CDDP treatment prevented tumor growth and prolonged median survival. The combined therapeutic effect of PLK2 inhibition with CDDP treatment was better than that of either monotherapy. These results indicate that increased PLK2 levels due to enriched TAp73 affect osteogenic differentiation and maturation and OS prognosis. In conclusion, PLK2 is a potential target for differentiation therapy of OS with enriched TAp73.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Osteogénesis , Osteosarcoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tumoral p73/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular , Cisplatino/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Células Tumorales Cultivadas , Proteína Tumoral p73/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079264

RESUMEN

Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73-often by TAp73 overexpression in cell lines with non-functional p53-were affirmative. However, genome-wide and phenotype-based studies led to the identification of TAp73-regulated genes involved in cellular survival and thus, tumor promotion. Our analyses therefore suggest that TAp73 may not necessarily be p53's natural substitute in enforcing tumor suppression. It has likely evolved to perform unique functions in regulating developmental processes and promoting cellular growth through entirely different sets of target genes that are not common to, and cannot be substituted by p53. The p53-related targets initially reported to be regulated by TAp73 may therefore represent an experimental possibility rather than the reality.


Asunto(s)
Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Proteína Tumoral p73/metabolismo
17.
Cancer Med ; 8(5): 2449-2461, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30972950

RESUMEN

BACKGROUND: Vitamin D3 (VitD) deficiency is linked to increased incidence and worse survival in bladder cancer (BCa). In addition to cystectomy, patients are treated with cisplatin-based chemotherapy, however 30%-50% of patients do not benefit from this treatment. The effects of VitD deficiency on response to chemotherapy remain unknown. METHODS: To test effects of VitD supplementation on the response to cisplatin we analyzed patient serum VitD levels and correlated that with survival. In vivo, VitD deficient mice were treated with cisplatin, with or without pretreatment with the active VitD metabolite, 1,25 dihydroxyvitamin D3 (1,25D3 ). Lastly, using BCa cell lines, T24 and RT-112, the mechanism of action of 1,25D3 and cisplatin combination treatment was determined by apoptosis assays, as well as western blot and RT-PCR. RESULTS: In this study, we determined that low serum 25 hydroxyvitamin D3 (25D3 ) levels was significantly associated with worse response to cisplatin. Pretreating deficient mice with 1,25D3 , reduced tumor volume compared to cisplatin monotherapy. In vitro, 1,25D3 pretreatment increased the apoptotic response to cisplatin. 1,25D3 pretreatment increased expression of TAp73 and its pro-apoptotic targets, in a VDR dependent manner. VDR and its transcriptional targets were induced after 1,25D3 treatment and further increased after the combination of 1,25D3 and cisplatin in a TAp73 dependent manner. CONCLUSIONS: Our data suggest that VitD deficiency could be a biomarker for poor response to cisplatin, and pretreating with VitD can increase the apoptotic response to cisplatin through VDR and TAp73 signaling crosstalk.


Asunto(s)
Colecalciferol/farmacología , Cisplatino/farmacología , Receptores de Calcitriol/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Tumoral p73/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Pronóstico , Receptores de Calcitriol/genética , Proteína Tumoral p73/genética , Neoplasias de la Vejiga Urinaria/etiología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Deficiencia de Vitamina D/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Transl Oncol ; 21(10): 1432-1439, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31025168

RESUMEN

INTRODUCTION: Goblet cell carcinoma (GCC) is an appendicular neoplasia representing less than 5% of all appendicular tumors, found in 0.3-0.9% of the appendectomies, 35-58% of all appendicular neoplasms, and less than 14% of malign appendix tumors. The most frequent clinical presentation is abdominal pain associated with a picture of acute appendicitis. MATERIALS AND METHODS: We present 3 clinical cases of appendix GCC, 2 subjected to cytoreductory surgery plus intraperitoneal hyperthermic chemotherapy and a third, who is currently receiving neoadjuvant treatment with a good response to chemotherapy and who will be offered the same treatment as the first two patients. Given the unpredictable behavior of these tumors, the use of molecular markers could help us to predict their behavior and prognosis. In this context, the TP73 gene would make an interesting putative marker. ∆Np73 has been described as overexpressed in a great variety of tumor types including colon cancer and this up-regulation is associated with a poor prognosis. To evidence its role in this malignancy, we evaluate here the status of ∆Np73 in the primary tumor and normal counterpart tissues, in the metastatic implants and in healthy areas of the peritoneum from the appendicular GCC patients. In addition, we checked the expression levels of this p73 variant in the tumor and normal tissue of 26 patients with colon cancer. RESULTS: Remarkably, 2 patients showed significant ∆Np73 down-regulation in both the primary tumor and the implants. Case 1 presented a fourfold decrease of levels in the primary tumor and 20-fold decrease in the implants. Case 2 showed a seven- and fourfold down-regulation in the primary tumor and implants, respectively. However, Case 3 showed an up-regulation of 53- and threefold in the primary tumor and implants, respectively. CONCLUSION: Goblet cell carcinoma of the appendix is very rate. It tends to seed throughout the peritoneum, making aggressive surgical cytoreduction and chemotherapy viable treatment options. Investigation into the molecular basis of these tumors may improve the diagnosis, prognosis and therapeutic decisions regarding these patients. ∆Np73 seems a good candidate for further analysis in longer series.


Asunto(s)
Adenocarcinoma/química , Neoplasias del Apéndice/química , Biomarcadores de Tumor/análisis , Células Caliciformes/química , Neoplasias Ováricas/química , Neoplasias Peritoneales/química , Proteína Tumoral p73/análisis , Adenocarcinoma/secundario , Adenocarcinoma/terapia , Neoplasias del Apéndice/patología , Neoplasias del Apéndice/terapia , Colon/química , Neoplasias del Colon/química , Procedimientos Quirúrgicos de Citorreducción , Regulación hacia Abajo , Femenino , Humanos , Hipertermia Inducida , Masculino , Persona de Mediana Edad , Neoplasias Ováricas/secundario , Neoplasias Peritoneales/secundario , Peritoneo/química
19.
Front Genet ; 10: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930930

RESUMEN

p73 transcription factor belongs to one of the most important gene families in vertebrate biology, the p53-family. Trp73 gene, like the other family members, generates multiple isoforms named TA and DNp73, with different and, sometimes, antagonist functions. Although p73 shares many biological functions with p53, it also plays distinct roles during development. Trp73 null mice (p73KO from now on) show multiple phenotypes as gastrointestinal and cranial hemorrhages, rhinitis and severe central nervous system defects. Several groups, including ours, have revisited the apparently unrelated phenotypes observed in total p73KO and revealed a novel p73 function in the organization of ciliated epithelia in brain and trachea, but also an essential role as regulator of ependymal planar cell polarity. Unlike p73KO or TAp73KO mice, tumor-prone Trp53-/- mice (p53KO) do not present ependymal ciliary or planar cell polarity defects, indicating that regulation of ciliogenesis and PCP is a p73-specific function. Thus, loss of ciliary biogenesis and epithelial organization might be a common underlying cause of the diverse p73KO-phenotypes, highlighting Trp73 role as an architect of the epithelial tissue. In this review we would like to discuss the data regarding p73 role as regulator of ependymal cell ciliogenesis and PCP, supporting the view of the Trp73-mutant mice as a model that uncouples ciliogenesis from PCP and a possible model of human congenital hydrocephalus.

20.
Future Sci OA ; 5(2): FSO366, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30820346

RESUMEN

AIM: TAp73 is a tumor suppressor, which compensates for p53 loss and induces apoptosis in tumors in response to genotoxic stress or small-molecule treatments. Pancreatic ductal adenocarcinoma has a late onset of the disease, responds poorly to the existing therapies and has a very low survival rates. RESULT: Here, using drug-repurposing approach, we found that protoporphyrin IX (PpIX) and benzoporphyrin derivative (BPD) monoacid ring A activate TAp73 and induce apoptosis in pancreatic cancer cells. PpIX and BPD induce reactive oxygen species and inhibit thioredoxin reductase 1. CONCLUSION: Thus, PpIX and BPD target cancer cells' vulnerabilities namely activate TAp73 tumor suppressor and inhibit oncogenic Trx1. Our findings may contribute to faster repurposing of PpIX and BPD to treat pancreatic tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA