Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Regen Ther ; 26: 533-540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39165408

RESUMEN

Extracellular vesicles (EVs) are natural carriers for intercellular communication within the human body. Mimicking and utilizing EVs by combining them with artificial nanocarriers such as liposomes for drug delivery has garnered considerable attention. However, current technologies for manipulating EVs to facilitate their fusion with liposomes are limited; the existing technique of polyethylene glycol (PEG)-induced fusion is highly inefficient for fusion. In our previous study, we demonstrated that membrane fusion could be induced by Tat peptide (YGRKKRRQRRR)-conjugated poly(ethylene glycol)-phospholipids (Tat-PEG-lipids), in which the Tat peptide and lipid domain facilitate membrane attachment and subsequent fusion between cells and liposomes. This approach is promising for forming EV and liposomal hybrids. In this study, we aim to fuse EVs and liposomes using Tat-PEG-lipids. We isolated and characterized EVs derived from HEK293T cell culture medium and treated a mixture of EVs and liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol (1:1, molar ratio), with Tat-PEG-lipids with different lipid chain lengths. Here, we used nonanoyl (C9), dodecanoyl (C12), and myristoyl (C14) groups as lipid anchors with 5 kDa PEG chains. Dynamic light scattering analysis revealed a large increase in the apparent size of mixture of EVs and liposomes by adding Tat-PEG-lipids (especially C14, C12, followed by C9). Fluorescence resonance energy transfer, confocal laser scanning microscopy, and transmission electron microscopy, used to analyze the reaction process, revealed that the membrane fusion occurred between EVs and liposomes but not their aggregates. The short lipid domain of Tat-PEG-lipids effectively induced membrane fusion and the formation of hybrid EVs and liposomes. Thus, Tat-PEG-lipids (C9 and C12) could be promising candidates for inducing membrane fusion to fabricate EV-liposome hybrids.

2.
Mol Ther ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39205389

RESUMEN

In Alzheimer's disease (AD), amyloid ß (Aß)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aß in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.

3.
Chembiochem ; 25(2): e202300642, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947251

RESUMEN

In recent years, targeted drug delivery has attracted a great interest for enhanced therapeutic efficiency, with diminished side effects, especially in cancer therapy. Cell penetrating peptides (CPPs) like HIV1-TAT peptides, appear to be the perfect vectors for translocating drugs or other cargoes across the plasma membrane, but their application is limited mostly due to insufficient specificity for intended targets. Although these molecules were successfully used, the mechanism by which the peptides enter the cell interior still needs to be clarified. The tripeptide motif RGD (arginine-glycine-aspartate), found in extracellular matrix proteins has high affinity for integrin receptors overexpressed in cancer and it is involved in different phases of disease progression, including proliferation, invasion and migration. Discovery of new peptides with high binding affinity for disease receptors and permeability of plasma membranes is desirable for both, development of targeted drug delivery systems and early detection and diagnosis. To complement the TAT peptide with specific targeting ability, we conjugated it with an integrin-binding RGD motif. Although the idea of RGD-CPPs conjugates is not entirely new,[1] here we describe the permeability abilities and specificity of integrin receptors of RGD-TAT peptides in model membranes. Our findings reveal that this novel RGD sequence based on TAT peptide maintains its ability to permeate lipid membranes and exhibits specificity for integrin receptors embedded in giant unilamellar vesicles. This promising outcome suggests that the RGD-TAT peptide has significant potential for applications in the field of targeted drug delivery systems.


Asunto(s)
Péptidos de Penetración Celular , Neoplasias , Humanos , Integrinas/metabolismo , Oligopéptidos/química , Péptidos de Penetración Celular/química , Lípidos
4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36986493

RESUMEN

Protein drugs have been emerging as a class of promising therapeutics. However, their topical application has been limited by their high molecular weight and poor permeability to the cell membrane. In this study, we aimed to enhance human growth hormone (hGH) permeability for topical application by conjugation of TAT peptide, a cell-penetrating peptide, to hGH via crosslinker. After TAT was conjugated to hGH, TAT-hGH was purified by affinity chromatography. TAT-hGH significantly increased cell proliferation compared with the control. Interestingly, the effect of TAT-hGH was higher than hGH at the same concentration. Furthermore, the conjugation of TAT to hGH enhanced the permeability of TAT-hGH across the cell membrane without affecting its biological activity in vitro. In vivo, the topical application of TAT-hGH into scar tissue markedly accelerated wound healing. Histological results showed that TAT-hGH dramatically promoted the re-epithelialization of wounds in the initial stage. These results demonstrate TAT-hGH as a new therapeutic potential drug for wound healing treatment. This study also provides a new method for topical protein application via enhancement of their permeability.

5.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902076

RESUMEN

Triple-negative breast cancer (TNBC) is an extremely aggressive subtype associated with a poor prognosis. At present, the treatment for TNBC mainly relies on surgery and traditional chemotherapy. As a key component in the standard treatment of TNBC, paclitaxel (PTX) effectively inhibits the growth and proliferation of tumor cells. However, the application of PTX in clinical treatment is limited due to its inherent hydrophobicity, weak penetrability, nonspecific accumulation, and side effects. To counter these problems, we constructed a novel PTX conjugate based on the peptide-drug conjugates (PDCs) strategy. In this PTX conjugate, a novel fused peptide TAR consisting of a tumor-targeting peptide, A7R, and a cell-penetrating peptide, TAT, is used to modify PTX. After modification, this conjugate is named PTX-SM-TAR, which is expected to improve the specificity and penetrability of PTX at the tumor site. Depending on hydrophilic TAR peptide and hydrophobic PTX, PTX-SM-TAR can self-assemble into nanoparticles and improve the water solubility of PTX. In terms of linkage, the acid- and esterase-sensitive ester bond was used as the linking bond, with which PTX-SM-TAR NPs could remain stable in the physiological environment, whereas PTX-SM-TAR NPs could be broken and PTX be released at the tumor site. A cell uptake assay showed that PTX-SM-TAR NPs were receptor-targeting and could mediate endocytosis by binding to NRP-1. The vascular barrier, transcellular migration, and tumor spheroids experiments showed that PTX-SM-TAR NPs exhibit great transvascular transport and tumor penetration ability. In vivo experiments, PTX-SM-TAR NPs showed higher antitumor effects than PTX. As a result, PTX-SM-TAR NPs may overcome the shortcomings of PTX and present a new transcytosable and targeted delivery system for PTX in TNBC treatment.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Oligopéptidos , Paclitaxel , Profármacos , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Nanopartículas/administración & dosificación , Paclitaxel/administración & dosificación , Profármacos/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación , Oligopéptidos/administración & dosificación
6.
Biosensors (Basel) ; 13(2)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832059

RESUMEN

We reported on an efficient RNA imaging strategy based on a CRISPR-Cas and Tat peptide with a fluorescent RNA aptamer (TRAP-tag). Using modified CRISPR-Cas RNA hairpin binding proteins fused with a Tat peptide array that recruits modified RNA aptamers, this simple and sensitive strategy is capable of visualizing endogenous RNA in cells with high precision and efficiency. In addition, the modular design of the CRISPR-TRAP-tag facilitates the substitution of sgRNAs, RNA hairpin binding proteins, and aptamers in order to optimize imaging quality and live cell affinity. With CRISPR-TRAP-tag, exogenous GCN4, endogenous mRNA MUC4, and lncRNA SatIII were distinctly visualized in single live cells.


Asunto(s)
Aptámeros de Nucleótidos , ARN , Sistemas CRISPR-Cas , Péptidos , Diagnóstico por Imagen
7.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615627

RESUMEN

Radiotherapy (RT) is one of the main clinical therapeutic strategies against cancer. Currently, multiple radiosensitizers aimed at enhancing X-ray absorption in cancer tissues have been developed, while limitations still exist for their further applications, such as poor cellular uptake, hypoxia-induced radioresistance, and unavoidable damage to adjacent normal body tissues. In order to address these problems, a cell-penetrating TAT peptide (YGRKKRRQRRRC)-modified nanohybrid was constructed by doping high-Z element Au in hollow semiconductor Cu2-xSe nanoparticles for combined RT and photothermal therapy (PTT) against breast cancer. The obtained Cu2-xSe nanoparticles possessed excellent radiosensitizing properties based on their particular band structures, and high photothermal conversion efficiency beneficial for tumor ablation and promoting RT efficacy. Further doping high-Z element Au deposited more high-energy radiation for better radiosensitizing performance. Conjugation of TAT peptides outside the constructed Cu2-xSe/Au nanoparticles facilitated their cellular uptake, thus reducing overdosage-induced side effects. This prepared multifunctional nanohybrid showed powerful suppression effects towards breast cancer, both in vitro and in vivo via integrating enhanced cell penetration and uptake, and combined RT/PTT strategies.


Asunto(s)
Neoplasias de la Mama , Péptidos de Penetración Celular , Nanopartículas del Metal , Neoplasias , Humanos , Femenino , Terapia Fototérmica , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Oro/farmacología , Oro/química , Neoplasias de la Mama/terapia , Línea Celular Tumoral
8.
Regen Ther ; 22: 90-98, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36712957

RESUMEN

Exosomes (diameter 30-200 nm) are a subtype of extracellular vesicles secreted by cells containing DNA, microRNA (miRNA), and proteins. Exosomes are expected to be valuable as a means of delivering drugs or functional miRNAs in treatment of diseases. However, the delivery of exosomes is not sufficiently effective, even though exosomes have intrinsic delivery functions. Cell-penetrating peptides (CPPs) are short peptide families that facilitate cellular intake of molecules and vesicles. We previously reported that the modification of cells, and liposomes with CPP-conjugated-lipids, CPPs conjugated with poly (ethylene glycol)-conjugated phospholipids (PEG-lipid), that induce adhesion by CPPs, can be useful for cell-based assays and harvesting liposomes. In this study, we aimed to modulate the exosome surface using Tat peptide (YGRKKRRQRRR)-PEG-lipids to improve intracellular delivery to endothelial cells. We isolated and characterized exosomes from the medium of HEK 293 T cell cultures. Tat conjugated PEG-lipids with different spacer molecular weights and lipid types were incorporated into exosomes using fluorescein isothiocyanate labeling to optimize the number of Tat-PEG-lipids immobilized on the exosome surface. The exosomes modified with Tat-PEG-lipids were incubated with human umbilical vein endothelial cells (HUVECs) to study the interaction. Tat conjugated with 5 kDa PEG and C16 lipids incorporated on the exosome surface were highly detected inside HUVECs by flow cytometry. Fluorescence was negligible in HUVECs for control groups. Thus, Tat-PEG-lipids can be modified on the exosome surface, improving the intracellular delivery of exosomes.

9.
J Mol Struct ; 1272: 134160, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36128074

RESUMEN

The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.

10.
ACS Appl Mater Interfaces ; 15(1): 432-451, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562665

RESUMEN

Intracellular delivery of therapeutic proteins has increased advantages over current small-molecule drugs and gene therapies, especially in therapeutic efficacies for a broad spectrum of diseases. Hence, developing the protein therapeutics approach provides a needed alternative. Here, we designed a mesoporous silica nanoparticle (MSN)-mediated protein delivery approach and demonstrated effective intracellular delivery of the denatured superoxide dismutase (SOD) protein, overcoming the delivery challenges and achieving higher enzymatic activity than native SOD-conjugated MSNs. The denatured SOD-conjugated MSN delivery strategy provides benefits of reduced size and steric hindrance, increased protein flexibility without distorting its secondary structure, exposure of the cell-penetrating peptide transactivator of transcription for enhanced efficient delivery, and a change in the corona protein composition, enabling cytosolic delivery. After delivery, SOD displayed a specific activity around threefold higher than in our previous reports. Furthermore, the in vivo biosafety and therapeutic potential for neuron therapy were evaluated, demonstrating the biocompatibility and the effective antioxidant effect in Neuro-2a cells that protected neurite outgrowth from paraquat-induced reactive oxygen species attack. This study offers an opportunity to realize the druggable possibility of cytosolic proteins using MSNs.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/química , Antioxidantes , Nanopartículas/química , Porosidad , Sistemas de Liberación de Medicamentos
11.
Curr Pharm Des ; 28(46): 3706-3719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278465

RESUMEN

BACKGROUND: In late 2019, a highly infectious and pathogenic coronavirus was recognized as Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), which causes acute respiratory disease, threatening human health and public safety. A total of 448,327,303 documented cases and 6,028,576 deaths have been reported as of March 8th 2022. The COVID-19 vaccines currently undergoing clinical trials or already in use should provide at least some protection against SARS-CoV-2; however, the emergence of new variations as a result of mutations may lessen the effectiveness of the currently available vaccines. Since the efficacy of available drugs and vaccines against COVID-19 is notably lower, there is an urgent need to develop a potential drug to treat this deadly disease. The SARS-CoV-2 spike (SCoV-SG) is the foremost drug target among coronaviruses. OBJECTIVE: The major objectives of the current study are to conduct a molecular docking study investigation of TAT-peptide47-57(GRKKRRQRRRP)-conjugated remodified therapeutics such as ritonavir (RTV), lopinavir (LPV), favipiravir (FPV), remdesivir (RMV), hydroxychloroquine (HCQ), molnupiravir (MNV) and nirmatrelvir (NMV) with (SCoV-SG) structure. METHODS: Molecular docking analysis was performed to study the interaction of repurposed drugs and drugs conjugated with the TAT-peptide with target SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) using Auto- Dock. Further docking investigation was completed with PatchDock and was visualized by the discovery of the studio visualizer 2020. RESULTS: TAT-peptides are well-characterized immune enhancers that are used in intracellular drug delivery. The results of molecular docking analysis showed higher efficiency and significantly enhanced and improved interactions between TP-conjugated repurposed drugs and the target sites of the SCoV-SG structure. CONCLUSION: The study concluded that TP-conjugated repurposed drugs may be effective in preventing COVID- 19, and therefore, in vitro, in vivo, and clinical trial studies are required in detail.


Asunto(s)
COVID-19 , Humanos , Antivirales/uso terapéutico , SARS-CoV-2 , Vacunas contra la COVID-19 , Preparaciones Farmacéuticas , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos , Glicoproteína de la Espiga del Coronavirus , Péptidos , Glicoproteínas
12.
Dokl Biochem Biophys ; 506(1): 220-222, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36303056

RESUMEN

Based on previous studies, two antibody-like molecules, monobodies, capable of high-affinity interaction with the SARS-CoV-2 nucleocapsid protein (dissociation constant of tens of nM) were selected. For delivery to target cells, genetically engineered constructs containing monobody and TAT peptide, placed either at the N- or C-terminus of the resulting polypeptide, were produced and expressed in E. coli. The construct with the highest affinity to the SARS-CoV-2 nucleocapsid protein was revealed with the use of thermophoresis technique. Cellular thermal shift assay demonstrated the ability of this construct to interact with the nucleocapsid protein within HEK293T cells transfected with the SARS-CoV-2 nucleocapsid protein fused to the mRuby3 fluorescent protein. Replacement of TAT peptide to S10 shuttle peptide, containing endosomolytic peptide, significantly improved the penetration of the construct into the target cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Anticuerpos Antivirales
13.
Int J Pharm X ; 4: 100129, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36164551

RESUMEN

Targeting, detecting, and destroying selectively cancer cells or specific organelles is a major challenge of nanomedicine. Recently, a new methodology was conceived to synthesize gold nanoparticles combined with a peptide having a C-terminal biotin (BIOT-NFL-peptide). This methodology called "Method IN" allows specific interactions between the BIOT-NFL-peptide, the polyethylene glycol diacid (PEG-COOH) and the gold salt (Au III) to produce multifunctional hybrid nano-carriers called BIOT-NFL-PEG-AuNPs. Here, we show that it is possible to use this strategy to synthesize multifunctional hybrid nano-carriers with other cell-penetrating peptides including TAT and Vim-peptides. Ex-vivo studies on F98 rat glioblastoma cells show that these new nanovectors acquire the cellular entry function of peptides and the gold particles make it possible to visualize by electron microscopy their localization in organelles. Thus, these new multifunctional nanovectors offer promising possibilities for the theranostic field, including the cell-penetrating property of the peptide, the intra-organelle localization of gold particles and their possible thermoplasmonic properties, as well as the stealth property of PEG.

14.
Pharmaceutics ; 14(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015324

RESUMEN

Membrane active peptides hold great potential for targeted drug delivery systems and understanding their mechanism of uptake is a key step in the development of peptide based therapeutics and clinical use. Giant unilamellar vesicles are cell-sized model membranes that can be individually observed under the microscope. The lipid composition of these membranes can be controlled, and interaction with peptides and changes induced by the peptides can be directly followed. Relevant information on the specific steps of peptides uptake can be obtained using membranes of different lipid composition. The present work provides a selection of dynamics and kinetics of peptides at interaction with model membranes of different lipid composition. The systematic peptide-membrane interaction was investigated by laser scanning confocal microscopy. The peptides used in this study neither internalized nor induced pore formation in neutral membranes composed of phosphatidylcholine and cholesterol. In membranes with anionic phosphatidylserine or cone-shaped phosphatidylethanolamine, all peptides internalized but only two of them were able to form pores, showing that the length of the peptide, the numbers of the arginine amino acid or the length of the α-helix are also relevant for the penetration efficiency of peptides.

15.
Pharmaceutics ; 14(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214190

RESUMEN

Modification with polyethylene glycol (PEGylation) and the use of rigid phospholipids drastically improve the pharmacokinetics of chemotherapeutics and result in more manageable or reduced side-effects. A major drawback is retarded cellular delivery of content, which, along with tumor heterogeneity, are the two main obstacles against tumor targeting. To enhance cellular delivery and reach a bigger area of a tumor, we designed liposomes decorated with two ligands: one for targeting tumor vasculature via a cyclic-pentapeptide containing arginine-glycine-aspartic acid (RGD), which impacts tumor independent of passive accumulation inside tumors, and one for extravascular targeting of tumor cells via a cell-penetrating peptide derived from human immunodeficiency virus type 1 transactivator of transcription (TAT). Liposomes with different ligand combinations were prepared and compared with respect to performance in targeting. Intravital imaging illustrates the heterogeneous behavior of RGD-liposomes in both intravascular and extravascular distribution, whereas TAT-liposomes exhibit a predictable extravascular localization but no intravascular targeting. Dual-ligand modification results in enhanced vascular targeting and a predictable extravascular behavior that improves the therapeutic efficacy of doxorubicin-loaded liposomes but also an augmented clearance rate of liposomes. However, the dual-modified liposome could be a great candidate for targeted delivery of non-toxic payloads or contrast agents for therapeutic or diagnostic purposes. Here we show that the combination of vascular-specific and tumor cell-specific ligands in a liposomal system is beneficial in bypassing the heterogeneous expression of tumor-specific markers.

16.
Mol Ther ; 30(2): 855-867, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547467

RESUMEN

Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.


Asunto(s)
Péptidos de Penetración Celular , Receptores de Endotelina , Péptidos de Penetración Celular/metabolismo , Endosomas/metabolismo , Receptores de Endotelina/metabolismo , Factores de Transcripción/metabolismo
17.
J Colloid Interface Sci ; 609: 707-717, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34839914

RESUMEN

A real-time and molecule-level monitoring of the interfacial dynamic interactions between molecules and a cell membrane is of vital importance. Herein, taking TAT, one of the most representative cell penetrating peptides, as an example, a photo-voltage transient technique and a dynamic giant bistratal vesicle (GBV) leakage method were combined with the traditional giant unilamellar vesicle (GUV) leakage assays, to provide a molecule-level understanding of the dynamic membrane interaction process performed in a low ionic strength and neutral pH condition. The photo-voltage test based on supported phospholipid bilayers showed a quick disturbance (<1 min) followed by a continuous reconstruction of the membrane by peptides, leading to a slight destruction (at TAT concentrations lower than 1 µg mL-1, i.e., 0.64 µM) or strong damage (e.g. at 10 µg mL-1, i.e., 6.4 µM) of the bilayer structure. The GUV/GBV leakage assays further demonstrated the TAT-induced membrane deformation and transmembrane diffusion of dyes, which occurred in an immediate, linear, and TAT-concentration dependent manner. Moreover, the flux of dye across the substrate-immobilized membranes was approximately three times of that across the substrate-free ones. This work gives information on time and molecular mechanism of the TAT-membrane interactions, demonstrates the different permeabilizing effects of TAT on immobilized and free membranes. Overall, it provides useful strategies to investigate the nano-bio interfacial interactions in a simple, global and real-time way.


Asunto(s)
Péptidos de Penetración Celular , Membrana Celular , Difusión , Membrana Dobles de Lípidos , Fosfolípidos
18.
J Pharm Sci ; 110(12): 3919-3928, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34418455

RESUMEN

The drug delivery systems improve the efficacy of chemotherapeutics through enhanced targeting and controlled release however, biological barriers of tumor microenvironment greatly impede the penetration of nanomedicine within the tumor. We report herein the fabrication of a PEG-detachable silybin (SLB) pH-sensitive liposome decorated with TAT-peptide. For this, Acyl hydrazide-activated PEG2000 was prepared and linked with ketone-derivatized DPPE via an acid-labile hydrazone bond to form mPEG2000-HZ-DPPE. TAT peptide was conjugated with a shorter -PEG1000-DSPE spacer and post-inserted into PEGylated liposome (DPPC: mPEG2000-DSPE: Chol). To prepare nanoliposomes (around 100 nm), first, a novel method was used to prepare SLB-Soya PC (SLB-SPC) complex, then this complex was incorporated into nanoliposomes. The pH-sensitivity and shielding effect of long PEG chain on TAT peptide was investigated using DiI liposome and FACS analysis. Pre-treatment to the lowered pH enhanced cellular association of TAT-modified pH-sensitive liposome due to the cleavage of hydrazone bond and TAT exposure. Besides, TAT-modified pH-sensitive liposomes significantly reduced cell viability compared to the plain liposome. In vivo results were very promising with pH-sensitive liposome by detaching PEG moieties upon exposure to the acidic tumor microenvironment, enhancing cellular uptake, retarding tumor growth, and prolonging the survival of 4T1 breast tumor-bearing BALB/c mice. TAT modification of pH-sensitive liposome improved cancer cell association and cytotoxicity and demonstrated potential intracellular delivery upon exposure to acidic pH. However, in in vivo studies, TAT as a targeting ligand significantly decreased the therapeutic efficacy of the formulation attributed to an inefficient tumor accumulation and higher release rate in the circulation. The results of this study indicated that pH-sensitive liposome containing SLB, which was prepared with a novel method with a significant SLB loading efficiency, is very effective in the treatment of 4T1 breast tumor-bearing BALB/c mice and merits further investigation.


Asunto(s)
Doxorrubicina , Liposomas , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Humanos , Concentración de Iones de Hidrógeno , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Silibina
19.
Pharmaceutics ; 13(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34452129

RESUMEN

The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.

20.
Methods Mol Biol ; 2355: 265-273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386964

RESUMEN

Based on the exceptionally high stability of γPNA (Gamma-modified peptide nucleic acid) duplexes, we designed a peptide/γPNA chimera in which a cell-penetrating TAT (HIV Tat-derived) peptide is flanked by two short complementary γPNA segments. Intramolecular hybridization of the γPNA segments results in a stable hairpin conformation in which the TAT peptide is constrained to form the loop. The TAT/γPNA hairpin (self-cyclized TAT peptide) enters cells at least tenfold more efficiently than its nonhairpin analog in which the two γPNA segments are noncomplementary. Extending one of the γPNA segments in the hairpin results in an overhang that can be used for binding and delivering a variety of nucleic acid-conjugated molecules into cells via hybridization to the overhang. We demonstrated efficient cellular delivery of an anti-telomerase γPNA that specifically reduced telomerase activity of A549 cells by over 97%.


Asunto(s)
Péptidos/química , Células A549 , Humanos , Hibridación de Ácido Nucleico , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA