Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 20: 3106-3119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782736

RESUMEN

Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.

2.
Acta Pharm Sin B ; 12(1): 451-466, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127398

RESUMEN

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

3.
Pharmacol Ther ; 231: 107986, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34481812

RESUMEN

Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Neoplasias/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores
4.
Regen Ther ; 18: 516-522, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34977285

RESUMEN

INTRODUCTION: The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. METHODS: First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C-C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. RESULTS: The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. CONCLUSIONS: It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro.

5.
Acta Pharm Sin B ; 10(8): 1382-1396, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32963938

RESUMEN

Hypoxia, a salient feature of most solid tumors, confers invasiveness and resistance to the tumor cells. Oxygen-consumption photodynamic therapy (PDT) suffers from the undesirable impediment of local hypoxia in tumors. Moreover, PDT could further worsen hypoxia. Therefore, developing effective strategies for manipulating hypoxia and improving the effectiveness of PDT has been a focus on antitumor treatment. In this review, the mechanism and relationship of tumor hypoxia and PDT are discussed. Moreover, we highlight recent trends in the field of nanomedicines to modulate hypoxia for enhancing PDT, such as oxygen supply systems, down-regulation of oxygen consumption and hypoxia utilization. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of PDT.

6.
EuPA Open Proteom ; 11: 20-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900108

RESUMEN

We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

7.
Oncoimmunology ; 4(6): e1008871, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26155427

RESUMEN

Myeloid cells contribute to increased malignancy and poor prognosis in breast cancer. We demonstrate that anti-CSF-1R therapy depletes a cell population sharing characteristics of tumor-associated macrophages (TAMs) and dendritic cells (DCs). Intravital imaging combined with cellular characterization has refined our understanding of anti-CSF-1R therapy on the tumor microenvironment.

8.
Oncoimmunology ; 4(3): e995559, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25949923

RESUMEN

Tumor associated macrophages and tumor infiltrating regulatory T cells greatly hamper host-protective antitumor responses. Therefore, we utilized a novel immunomodulator, heat-killed Mycobacterium indicus pranii (Mw), to repolarize TAM and an agonistic GITR antibody (DTA-1) to reduce intratumoral regulatory T cell frequency for generation of a host-protective antitumor response. Although, the combination of Mw and DTA-1was found to be effective against advanced stage tumors, however, Mw or DTA-1 failed to do so when administered individually. The presence of high level of regulatory T cells abrogated the only Mw induced antitumor functions, whereas only DTA-1 treatment was found to be ineffective due to its inability to induce TAM repolarization in vivo. The combination therapy was found to be effective since DTA-1 treatment reduced the frequency of regulatory T cells to such an extent where they could not attenuate Mw induced TAM repolarization in vivo. Therefore, the combination therapy involving Mw and DTA-1 may be utilized to the success of advanced stage solid tumor immunotherapies.

9.
Cancer Biol Ther ; 15(11): 1524-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482949

RESUMEN

Time-lapse live cell imaging is a powerful tool for studying the responses of cells to drugs. Zoledronic acid (ZOL) is the most potent aminobiphosphonate able to induce cell growth inhibition at very low concentrations. The lack of clear evidence of ZOL-induced anti-cancer effects is likely due to its unfavorable pharmacokinetic profile. The use of nanotechnology-based formulations allows overcoming these limitations in ZOL pharmaco-distribution. Recently, stealth liposomes (LIPOs) and new self-assembly PEGylated nanoparticles (NPs) encapsulating ZOL were developed. Both the delivery systems showed promising anticancer activity in vitro and in vivo. In this work, we investigated the cytostatic effect of these novel formulations (LIPOs and NPs) compared with free ZOL on 2 different prostate cancer cell lines, PC 3 and DU 145 and on prostate epithelial primary cells EPN using time lapse video-microscopy (TLVM). In PC3 cells, free ZOL showed a significant anti-proliferative effect but this effect was lower than that induced by LIPOs and NPs encapsulating ZOL; moreover, LIPO-ZOL was more potent in inducing growth inhibition than NP-ZOL. On the other hand, LIPO-ZOL slightly enhanced the free ZOL activity on growth inhibition of DU 145, while the anti-proliferative effect of NP-ZOL was not statistically relevant. These novel formulations did not induce anti-proliferative effects on EPN cells. Finally, we evaluated cytotoxic effects on DU145 where, LIPO-ZOL induced the highest cytotoxicity compared with NP-ZOL and free ZOL. In conclusion, ZOL can be transformed in a powerful anticancer agent, if administered with nanotechnology-based formulations without damaging the healthy tissues.


Asunto(s)
Antineoplásicos/administración & dosificación , Conservadores de la Densidad Ósea/administración & dosificación , Difosfonatos/administración & dosificación , Sistemas de Liberación de Medicamentos , Imidazoles/administración & dosificación , Nanopartículas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Humanos , Liposomas , Masculino , Neoplasias de la Próstata , Imagen de Lapso de Tiempo , Ácido Zoledrónico
10.
Hum Vaccin Immunother ; 10(11): 3251-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483674

RESUMEN

Adjuvants are a critical but largely overlooked and poorly understood component included in vaccine formulations to stimulate and modulate the desired immune responses to an antigen. However, unlike in the protective infectious disease vaccines, adjuvants for cancer vaccines also need to overcome the effect of tumor-induced suppressive immune populations circulating in tumor-bearing individuals. Myeloid-derived suppressor cells (MDSC) are considered to be one of the key immunosuppressive populations that inhibit tumor-specific T cell responses in cancer patients. This review focuses on the different signals for the activation of the immune system induced by adjuvants, and the close relationship to the mechanisms of recruitment and activation of MDSC. This work explores the possibility that a cancer vaccine adjuvant may either strengthen or weaken the effect of tumor-induced MDSC, and the crucial need to address this in present and future cancer vaccines.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Vacunas contra el Cáncer/inmunología , Células Mieloides/inmunología , Neoplasias/inmunología , Diferenciación Celular/inmunología , Citocinas/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Humanos , Péptidos y Proteínas de Señalización Intercelular/inmunología , Activación de Linfocitos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Neoplasias/prevención & control , Neoplasias/terapia , Linfocitos T/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA