Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Clin Transl Immunology ; 13(9): e70001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221178

RESUMEN

Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.

2.
J Viral Hepat ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248338

RESUMEN

Cigarette smoking is associated with worse clinical outcomes in patients with chronic hepatitis B (CHB) infection, but the effects on hepatitis B surface antigen (HBsAg) seroclearance are unclear. This study aimed to investigate the effect of active smoking on HBsAg seroclearance (SC) and its impact on peripheral blood lymphocytes in patients with CHB infection. Longitudinal follow-up data was retrieved in 7833 antiviral-treated CHB subjects identified from a centralised electronic patient record database (Part 1). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs) from 27 CHB-infected patients (6 active smokers; 13 with SC) was performed by flow cytometry to assess programmed death-1 (PD-1) expression and proportion of regulatory T cells (CD4+CD25+CD127lo). Effector function of HBV-specific T cells was examined by comparing granzyme B (GZMB) and transforming growth factor beta (TGFß) production in undepleted PBMCs and Treg-depleted PBMCs after 7 days in vitro stimulation with HBV envelope protein overlapping peptides (Part 2). Over a median follow-up of 5 years, smoking was associated with lower probability of SC (aHR 0.70, 95% CI 0.57-0.87). PD-1 expression was increased in CD4+T cells, CD8+T cells and CD20+B cells among smokers compared to non-smokers and positively correlated with pack years (all p < 0.05). Treg depletion led to partial functional recovery of HBV-specific T cells, with significantly bigger magnitude in smokers (p = 0.0451, mean difference = 4.68%) than non-smokers (p = 0.012, mean difference = 4.2%). Cigarette smoking is associated with lower chance of HBsAg seroclearance, higher PD-1 expression on lymphocytes, and impairment of effector functions of HBV-specific T cells in CHB.

3.
FEBS Lett ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266465

RESUMEN

Dendritic cells (DC) are professional antigen-presenting cells involved in promoting and controlling immune responses. Different subsets of DC, named tolerogenic (tol)DC, play a critical role in the maintenance of tissue homeostasis and in fostering tolerance. These unique skills make tolDC especially attractive for strategies aimed at re-establishing/inducing tolerance in immune-mediated conditions. The generation of potent tolDC in vitro from peripheral blood monocytes has seen remarkable advancements. TolDC modulate T cell dynamics by favoring regulatory T cells (Tregs) and curbing effector/pathogenic T cells. Among the several methods developed for in vitro tolDC generation, IL-10 conditioning has been proven to be the most efficient, as IL-10-modulated tolDC were demonstrated to promote Tregs with the strongest suppressive activities. Investigating the molecular, metabolic, and functional profiles of tolDC uncovers essential pathways that facilitate their immunoregulatory functions. This Review provides an overview of current knowledge on the role of tolDC in health and disease, focusing on IL-10 production, functional characterization of in vitro generated tolDC, molecular and metabolic changes occurring in tolDC induced by tolerogenic agents, clinical applications of tolDC-based therapy, and finally new perspectives in the generation of effective tolDC.

4.
Autoimmun Rev ; : 103601, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159711

RESUMEN

Autoimmune diseases (AIDs) affect 5-10% of the population . There are more than ~100 different autoimmune diseases. The AIDs are one of the top 10 causes of death in women under 65; 2nd highest cause of chronic illness; top cause of morbidity in women in the US. The NIH estimates annual direct healthcare costs for autoimmune diseases about $100 billion, in comparison, with cancers investment of $57 billion, heart and stroke cost of $200 billion. The current treatments for autoimmune diseases encompasses: steroids, chemotherapy, immunosuppressants, biological drugs, disease specific drugs (like acethylcholine-estherase for myasthenia gravis). The treatments for autooimmune diseases supress the patient immune network, which leads the patients to be more susceptible to infections. Hence, there is a need to develop immunomodulatory small molecules with minimal side effects to treat autoimmune diseases. The helminths developed secreting compounds which modulate the human defense pathways in order to develop tolerance and survive in the host environment. We have imitated the immunomodulatory activity of the helminth by using a derivative of the helminth secretory molecule. A bi-functional small molecule -tuftsin (T)-phosphorylcholine (PC), coined as TPC, was constructed . This chimeric molecule showed its immunomodulatory activity in 4 murine models of autoimmune diseases, attenuating the clinical score and the inflammatory response by immunomodutating the host immune system. Ex-vivo in human peripheral blood mononuclear cells (PBMCs) and biopsies originated from arteries of patients with giant cell arteritis. This paper decipher the mode of action of TPC immunomodulatory activity. Our data propose the potential for this small molecule to be a novel therapy for patients with autoimmune diseases.

5.
Ann Med Surg (Lond) ; 86(8): 4456-4462, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118685

RESUMEN

Background: Atherosclerosis, a chronic inflammatory disease impacting arteries, is closely linked to cardiovascular conditions. Dyslipidemia, marked by high low-density lipoprotein (LDL), low high-density lipoprotein (HDL), and increased plasma triglycerides, is a key risk factor. Atherogenesis begins when modified lipoproteins like oxidized LDL (ox-LDL) activate the immune system. This study explores the roles of T-regulatory cells (Tregs) and interleukins 10 (IL-10), 6 (IL-6), and 17 (IL-17) in atherogenesis. Methods: Samples were collected from the Hospital patients with stable angina pectoris (SAP). Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient and analyzed via flow cytometry. IL-10, IL-6, and IL-17 levels in cell culture supernatant were measured using ELISA. Data were expressed as mean ± SEM and analyzed with statistical software. Results: Results indicate that only patients exhibited reduced Treg and IL-10 levels after high-dose ox-LDL treatment. Significant IL-6 reduction was observed in both NCA and SA groups after high-dose n-LDL and low/high ox-LDL treatments compared to untreated PBMCs. Conclusions and future directions: Future research will explore n-LDL and ox-LDL effects on Th17/Treg immune responses within a specific cytokine environment known for inducing inflammation, assessing their potential role in atherosclerosis progression.

6.
Pediatr Rheumatol Online J ; 22(1): 69, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090751

RESUMEN

OBJECTIVES: To measure regulatory T cell (Treg) levels in the peripheral blood of children with juvenile idiopathic arthritis (JIA) and analyse the association of this measure with disease activity, quality of life, adjustment of treatment, and hospitalisation. METHODS: We conducted a two-phase study (cross-sectional and prospective), including consecutive children with a JIA diagnosis according to ILAR criteria. Our independent variables were Tregs, Th1, Th2, and cytokines in peripheral blood, and our dependent variables in the cross-sectional phase were arthritis category, JIA activity, and patient-reported outcomes. To test associations, we used Spearman's correlation coefficient and the Mann-Whitney U test. In the prospective phase, we explored the probability of treatment adjustment and hospitalisation for JIA during follow-up according to Tregs levels at baseline, using Cox proportional regression. RESULTS: Our sample included 87 participants (median age 11 years, 63.2% girls). Tregs were not associated with most variables of interest. However, we found that higher Tregs concentration was associated with lower erythrocyte sedimentation rate (ESR) and better subjective disease status and course, while higher IL-10 and TGF-ß levels were associated with lower ESR, less pain, and better subjective disease status We found no association between Tregs and treatment adjustments or hospitalisation. CONCLUSIONS: Higher baseline Treg levels in the peripheral blood of children with JIA may be associated with reduced disease activity and better quality of life, though were not informative on the inflammatory progression on the follow-up.


Asunto(s)
Artritis Juvenil , Calidad de Vida , Linfocitos T Reguladores , Humanos , Artritis Juvenil/sangre , Artritis Juvenil/inmunología , Niño , Femenino , Masculino , Linfocitos T Reguladores/inmunología , Estudios Transversales , Estudios Prospectivos , Adolescente , Sedimentación Sanguínea , Hospitalización/estadística & datos numéricos , Índice de Severidad de la Enfermedad , Preescolar
7.
Braz J Infect Dis ; 28(5): 103866, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163991

RESUMEN

Human Immunodeficiency Virus (HIV) infection is among the most challenging issues in the healthcare system, presenting significant financial and hygiene problems with a wide range of clinical manifestations. Despite the hopeful outcomes of Antiretroviral Therapies (ARTs), the current strategies for the treatment of patients with HIV infection have not shown clinical significance for all subjects, which is mainly due to the complexity of the disease. Therefore, the need for collaborative and interdisciplinary research focused on deciphering the multifaceted cellular, and molecular immunopathogenesis of HIV remains essential in the development of innovative and more efficacious therapeutic approaches. T-regulatory (Treg) cells function as suppressors of effector T-cell responses contributing to the inhibition of autoimmune disorders and the limitation of chronic inflammatory diseases. Notably, these cells can play substantial roles in regulating immune responses, immunopathogenesis, viral persistence and disease progression, and affect therapeutic responses in HIV patients. In this review, we aim elucidating the role of T-regulatory cells (Tregs) in the immunopathogenesis of HIV, including immunological fatigue and seroconversion. In particular, the focus of the current study is exploration of novel immunotherapeutic approaches to target HIV or related co-infections.

8.
Front Immunol ; 15: 1447897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161770

RESUMEN

Introduction: Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis. Methods: Dendritic cell cultures were obtained from bone marrow cells of Balb/c mice. Dendritic cells (DCs) cultures were transfected with pmaxCCR9, pmaxIL-10, and pmaxCollagen type II by electroporation. The phenotype and functions of DCs were studied using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Migration of electroporated DCs was assessed in vitro. Induction of antigen-collagen induced arthritis (ACIA) was carried out according to the protocol in Balb/c mice. DCs were then administered to ACIA mice. The development of arthritis was monitored by measuring paw swelling with a caliper at different time points. The immunological changes were assessed by analyzing the content of antibodies to type II collagen using enzyme immunoassay. Additionally, a histological examination of the joint tissue was conducted, followed by data analysis. The results are as follows: DCs were obtained, characterized by reduced expression of CD80, CD86, and H-2Db (MHC class I), increased expression of CCR9, as well as producing IL-10 and having migratory activity to thymus cells. Transfected DCs induced T-regulatory cells (T-reg) and increased the intracellular content of IL-10 and TGF-ß in CD4+T cells in their co-culture, and also suppressed their proliferative activity in response to antigen. The administration of tolDCs transfected with DNA constructs encoding type II collagen, IL-10, and CCR9 to mice with ACIA demonstrated a reduction in paw swelling, a reduction in the level of antibodies to type II collagen, and a regression of histological changes. Conclusion: The study presents an approach by which DCs transfected with DNA constructs encoding epitopes of type II collagen, IL-10 and CCR9 promote the development of antigen-specific tolerance, control inflammation and reduce the severity of experimental arthritis through the studied mechanisms: induction of T-reg, IL-10, TGF-ß.


Asunto(s)
Artritis Experimental , Colágeno Tipo II , Células Dendríticas , Tolerancia Inmunológica , Interleucina-10 , Ratones Endogámicos BALB C , Receptores CCR , Transfección , Animales , Células Dendríticas/inmunología , Colágeno Tipo II/inmunología , Interleucina-10/inmunología , Ratones , Artritis Experimental/inmunología , Receptores CCR/inmunología , Receptores CCR/genética , Modelos Animales de Enfermedad , Células Cultivadas , Linfocitos T Reguladores/inmunología , Femenino
9.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123357

RESUMEN

BACKGROUND: Relapsed medulloblastoma (MB) poses a significant therapeutic challenge due to its highly immunosuppressive tumor microenvironment. Immune checkpoint inhibitors (ICIs) have struggled to mitigate this challenge, largely due to low T-cell infiltration and minimal PD-L1 expression. Identifying the mechanisms driving low T-cell infiltration is crucial for developing more effective immunotherapies. METHODS: We utilize a syngeneic mouse model to investigate the tumor immune microenvironment of MB and compare our findings to transcriptomic and proteomic data from human MB. RESULTS: Flow cytometry reveals a notable presence of CD45hi/CD11bhi macrophage-like and CD45int/CD11bint microglia-like tumor-associated macrophages (TAMs), alongside regulatory T-cells (Tregs), expressing high levels of the inhibitory checkpoint molecule VISTA. Compared to sham control mice, the CD45hi/CD11bhi compartment significantly expands in tumor-bearing mice and exhibits a myeloid-specific signature composed of VISTA, CD80, PD-L1, CTLA-4, MHCII, CD40, and CD68. These findings are corroborated by proteomic and transcriptomic analyses of human MB samples. Immunohistochemistry highlights an abundance of VISTA-expressing myeloid cells clustering at the tumor-cerebellar border, while T-cells are scarce and express FOXP3. Additionally, tumor cells exhibit immunosuppressive properties, inhibiting CD4 T-cell proliferation in vitro. Identification of VISTA's binding partner, VSIG8, on tumor cells, and its correlation with increased VISTA expression in human transcriptomic analyses suggests a potential therapeutic target. CONCLUSIONS: This study underscores the multifaceted mechanisms of immune evasion in MB and highlights the therapeutic potential of targeting the VISTA-VSIG axis to enhance anti-tumor responses.

10.
Biomedicines ; 12(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39200145

RESUMEN

Thymic regulatory lymphocytes (Tregs) are rare in the normal periphery where they mediate immune tolerance but accumulate in the tumor immune microenvironment (TIM), reducing the antitumor response. Subtypes of classical Hodgkin lymphoma (CHL) are characterized by a minority of malignant Hodgkin and Reed-Sternberg cells (HRS) and an abundant TIM that plays a key role in modulating the disease. CHL is related to the Epstein-Barr virus (EBV), whose oncogenes influence the growth of HRS. We analyzed the number of T lymphocytes expressing the regulatory marker FOXP3 in CHL with regard to EBV status. The tumor tissue of 182 patients was stained by double immunohistochemistry for FOXP3, CD4, and CD8, and the number of different phenotypes was analyzed microscopically. EBV status was determined by EBER in situ hybridization. EBV-positive CHL was confirmed in 28% of patients and was associated with mixed cellularity (MC) (p < 0.001), older age (p < 0.001), and unfavorable outcomes (p = 0.038). The number of CD8+ T lymphocytes differed according to the EBV status of MC and nodular sclerosis (NS), and was the lowest in EBV-negative NS (p = 0.001). Likewise, the numbers for FOXP3 and FOXP3/CD4 were different, and were the lowest in EBV-negative MC (p = 0.035 and p = 0.041, respectively). Values above a median of FOXP3 and CD4 are associated with longer progression-free survival (p = 0.039 and p < 0.001, respectively). EBV impacts the composition of T cell phenotypes in TIM, among which the amount of CD4 and FOXP3 is prognostically valuable.

11.
Bull Exp Biol Med ; 177(1): 124-132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38960961

RESUMEN

Pregnancy-specific ß1-glycoprotein (PSG), one of the most important proteins of pregnancy, has a pronounced immunosuppressive effect. Short peptides of PSG, the so-called SLiMs (short linear motifs), are promising molecules for mild immunosuppression. We studied in vitro effect of short PSG peptides (YACS, YQCE, YVCS, and YECE) on differentiation and cytokine profile of human T-regulatory lymphocytes (Treg). T helpers isolated from the peripheral blood and polarized into the Treg phenotype with a T-cell activator (anti-CD2/3/28) and the cytokines IL-2 and transforming grown factor ß (TGFß) were used. PSG peptides were shown to have no direct modulatory effect on Treg differentiation in a culture of CD4+ cells polarized to the Treg phenotype. At the same time, PSG peptides had no effect on the viability and number of CD4+ cells in the in vitro culture. PSG peptides also had no effect on the levels of TNFα, IL-8, IL-2, macrophage inflammatory protein 1ß, IL-17, IL-10, IL-6, granulocyte-macrophage CSF, monocyte chemoattractant protein 1, IL-13, IL-5, IL-7, IL-12(p70), IL-1ß, granulocyte CSF, IL-4, but decreased IFNγ levels. The observed ability of the YQCE peptide to reduce the production of this proinflammatory Th1 cytokine by T helper cells can be interpreted as a positive effect. Our findings can be used for further development of safe peptide drugs based on SLiMs sequences.


Asunto(s)
Diferenciación Celular , Citocinas , Glicoproteínas beta 1 Específicas del Embarazo , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Diferenciación Celular/efectos de los fármacos , Glicoproteínas beta 1 Específicas del Embarazo/metabolismo , Citocinas/metabolismo , Femenino , Embarazo , Péptidos/farmacología , Interleucina-2/metabolismo , Células Cultivadas
12.
Artículo en Inglés | MEDLINE | ID: mdl-39005010

RESUMEN

BACKGROUND AND AIM: Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS: Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1ß levels in human and mouse serum were assessed. RESULTS: Interleukin-1ß levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1ß levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1ß concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS: Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.

14.
Cancer Cell ; 42(6): 1051-1066.e7, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38861924

RESUMEN

PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Proteína Coestimuladora de Linfocitos T Inducibles , Interleucina-2 , Melanoma , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T Reguladores/inmunología , Humanos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Melanoma/inmunología , Melanoma/terapia , Melanoma/tratamiento farmacológico , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-2/inmunología , Ratones Endogámicos C57BL , Transducción de Señal , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Línea Celular Tumoral
15.
Front Microbiol ; 15: 1344857, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803374

RESUMEN

Mycobacterium tuberculosis (M. tb) genome encompasses 4,173 genes, about a quarter of which remain uncharacterized and hypothetical. Considering the current limitations associated with the diagnosis and treatment of tuberculosis, it is imperative to comprehend the pathomechanism of the disease and host-pathogen interactions to identify new drug targets for intervention strategies. Using in-silico comparative genome analysis, we identified one of the M. tb genes, Rv1509, as a signature protein exclusively present in M. tb. To explore the role of Rv1509, a likely methyl transferase, we constructed a knock-in Mycobacterium smegmatis (M. smegmatis) constitutively expressing Rv1509 (Ms_Rv1509). The Ms_Rv1509 led to differential expression of many transcriptional regulator genes as assessed by RNA-seq analysis. Further, in-vitro and in-vivo studies demonstrated an enhanced survival of Ms_Rv1509 inside the host macrophages. Ms_Rv1509 also promoted phagolysosomal escape inside macrophages to boost bacterial replication and dissemination. In-vivo infection studies revealed that Ms_Rv1509 survives better than BCG and causes pathological manifestations in the pancreas after intraperitoneal infection. Long-time survival of Ms_Rv1509 resulted in lymphocyte migration, increased T regulatory cells, giant cell formation, and likely granuloma formation in the pancreas, pointing toward the role of Rv1509 in M. tb pathogenesis.

16.
Hum Reprod ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38756099

RESUMEN

Endometriosis is a benign disease of the female reproductive tract, characterized by the process of chronic inflammation and alterations in immune response. It is estimated to affect 2-19% of women in the general population and is commonly associated with symptoms of chronic pelvic pain and infertility. Regulatory T cells (Treg) are a subpopulation of T lymphocytes that are potent suppressors of inflammatory immune response, essential in preventing destructive immunity in all tissues. In endometriosis, several studies have investigated the possible role of Treg cells in the development of the disease. Most studies to date are heterogeneous in methodology and are based on a small number of cases, which means that it is impossible to define their exact role at present. Based on current knowledge, it seems that disturbed Treg homeostasis, leading to increased systemic and local inflammation within ectopic and eutopic endometrium, is present in women who eventually develop endometriosis. It is also evident that different subsets of human Treg cells have different roles in suppressing the immune response. Recent studies in patients with endometriosis have investigated naive/resting FOXP3lowCD45RA+ Treg cells, which upon T cell receptor stimulation, differentiate into activated/effector FOXP3highCD45RA- Treg cells, characterized by a strong immunosuppressive activity. In addition, critical factors controlling expression of Treg/effector genes, including reactive oxygen species and heme-responsive master transcription factor BACH2, were found to be upregulated in endometriotic lesions. As shown recently for cancer microenvironments, microbial inflammation may also contribute to the local composition of FOXP3+ subpopulations in endometriotic lesions. Furthermore, cytokines, such as IL-7, which control the homeostasis of Treg subsets through the tyrosine phosphorylation STAT5 signalling pathway, have also been shown to be dysregulated. To better understand the role of Treg in the development of endometriosis, future studies should use clear definitions of Tregs along with specific characterization of the non-Treg (FOXP3lowCD45RA-) fraction, which itself is a mixture of follicular Tregs and cells producing inflammatory cytokines.

17.
EMBO Rep ; 25(6): 2635-2661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730210

RESUMEN

Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.


Asunto(s)
Interleucinas , Obesidad , Linfocitos T Reguladores , Termogénesis , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Interleucinas/metabolismo , Obesidad/metabolismo , Ratones , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Front Immunol ; 15: 1371089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571964

RESUMEN

CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linfocitos T Reguladores , Citocinas , Microambiente Tumoral
19.
Oral Oncol Rep ; 102024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38681116

RESUMEN

Hu Antigen R, also known as ELAVL1 (HuR), is a key posttranscriptional regulator in eukaryotic cells. HuR overexpression promotes several malignancies, including head and neck squamous cell carcinoma (HNSCC). However, its immune dysfunction-associated tumorigenesis pathways remain unknown. We examined HuR's effects on oral malignancies and immune cell function in vitro and in vivo using oral carcinoma cells and transgenic HuR knockout (KO) mice. CRISPR/Cas9-mediated HuR deletion in mice syngeneic oral cancer cells eliminated colony formation and tumor development. HuR-KO tumors had a lower tumor volume, fewer CD4+CD25+FoxP3+ regulatory T cells, and more CD8+ T cells, suggesting that HuR may suppress the immune response during oral cancer progression. In contrast, HuR KO oral epithelial tissues are resistant to 4NQO-induced oral malignancies compared to control tumor-bearing mice. HuR KO mice showed fewer Tregs and greater IFN levels than WT tumor-bearing mice, suggesting anticancer activity. Finally, the HuR inhibitor pyrvinium pamoate lowers tumor burden by enhancing CD8+ infiltration at the expense of CD4+, suggesting anticancer benefits. Thus, HuR-dependent oral neoplasia relies on immunological dysfunction, suggesting that decreasing HuR may boost antitumor potential and offer a novel HNSCC therapy.

20.
Front Vet Sci ; 11: 1381162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659456

RESUMEN

Tamoxifen (TAM) is widely utilized in the prevention and treatment of human breast cancer and has demonstrated the potential to modulate the immune response. It has been proposed as a therapeutic tool for immune-mediated diseases. TAM has been investigated as a possible treatment for asthma-like conditions in horses, revealing specific impacts on the innate immune system. While the effects of TAM on equine neutrophils are well-documented, its influence on lymphocytes and the modulation of the immune response polarization remains unclear. This in vitro study employed peripheral blood mononuclear cells (PBMC) from healthy horses, exposing them to varying concentrations of the TAM and assessing the expression of genes involved in the polarization of the immune response (TBX21, IFNG, GATA3, IL4, IL10, FOXP3, and CTLA4) in PBMC stimulated or not with PMA/ionomycin. Additionally, the effect of TAM over the proportion of regulatory T cells (Treg) was also assessed. TAM did not significantly affect the expression of these genes and Treg at low concentrations. However, at the highest concentration, there was an impact on the expression of GATA3, IL4, IL10, and CTLA4 genes. These alterations in genes associated with a Th2 and regulatory response coincided with a noteworthy increase in drug-associated cytotoxicity but only at concentrations far beyond those achieved in pharmacological therapy. These findings suggest that the effects of TAM, as described in preclinical studies on asthmatic horses, may not be attributed to the modification of the adaptive response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA