Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Vaccines (Basel) ; 12(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39066373

RESUMEN

Arenavirus-based vectors are being investigated as therapeutic vaccine candidates with the potential to elicit robust CD8 T-cell responses. We compared the immunogenicity of replicating (artPICV and artLCMV) and non-replicating (rPICV and rLCMV) arenavirus-based vectors expressing simian immunodeficiency virus (SIV) Gag and Envelope (Env) immunogens in treatment-naïve non-human primates. Heterologous regimens with non-replicating and replicating vectors elicited more robust SIV IFN-γ responses than a homologous regimen, and replicating vectors elicited significantly higher cellular immunogenicity than non-replicating vectors. The heterologous regimen elicited high anti-Env antibody titers when administered intravenously, with replicating vectors inducing significantly higher titers than non-replicating vectors. Intramuscular immunization resulted in more durable antibody responses than intravenous immunization for both vector platforms, with no difference between the replicating and non-replicating vectors. Overall, both replicating and non-replicating arenavirus vectors generated robust T- and B-cell-mediated immunity to SIV antigens in treatment-naïve non-human primates, supporting further evaluation of these vectors in a clinical setting for HIV therapy.

2.
Oncotarget ; 15: 470-485, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39007281

RESUMEN

microRNAs (miRNAs) are small, non-coding RNAs that regulate expression of multiple genes. MiR-193a-3p functions as a tumor suppressor in many cancer types, but its effect on inducing specific anti-tumor immune responses is unclear. Therefore, we examined the effect of our lipid nanoparticle (LNP) formulated, chemically modified, synthetic miR-193a-3p mimic (INT-1B3) on anti-tumor immunity. INT-1B3 inhibited distant tumor metastasis and significantly prolonged survival. INT-1B3-treated animals were fully protected against challenge with autologous tumor cells even in absence of treatment indicating long-term immunization. Protection against autologous tumor cell challenge was hampered upon T cell depletion and adoptive T cell transfer abrogated tumor growth. Transfection of tumor cells with our miR-193a-3p mimic (1B3) resulted in tumor cell death and apoptosis accompanied by increased expression of DAMPs. Co-culture of 1B3-transfected tumor cells and immature DC led to DC maturation and these mature DC were able to stimulate production of type 1 cytokines by CD4+ and CD8+ T cells. CD4-CD8- T cells also produced type 1 cytokines, even in response to 1B3-transfected tumor cells directly. Live cell imaging demonstrated PBMC-mediated cytotoxicity against 1B3-transfected tumor cells. These data demonstrate for the first time that miR-193a-3p induces long-term immunity against tumor development via modulation of the tumor microenvironment and induction of immunogenic cell death.


Asunto(s)
MicroARNs , Nanopartículas , Microambiente Tumoral , MicroARNs/genética , Animales , Microambiente Tumoral/inmunología , Ratones , Humanos , Nanopartículas/química , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Apoptosis , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones Endogámicos C57BL , Inmunidad Celular , Linfocitos T CD8-positivos/inmunología , Femenino , Transfección , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/patología , Citocinas/metabolismo , Liposomas
3.
Hematol Rep ; 16(2): 299-307, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38804283

RESUMEN

Background: Brentuximab Vedotin (BV) has revolutionized the treatment landscape for Hodgkin's lymphoma, yet its effects on pre-existing autoimmune disorders remain elusive. Methods: Here, we present four cases of patients with concurrent autoimmune conditions-Crohn's disease, vitiligo, type I diabetes, and minimal change disease-undergoing BV therapy for Hodgkin's lymphoma. The patients were treated with A-AVD instead of ABVD due to advanced-stage disease with high IPI scores. Results: Our findings reveal the surprising and complex interplay between BV exposure and autoimmune manifestations, highlighting the need for multidisciplinary collaboration in patient management. Notably, the exacerbation of autoimmune symptoms was observed in the first three cases where T-cell-mediated autoimmunity predominated. Additionally, BV exposure precipitated autoimmune thrombocytopenia in the vitiligo patient, underscoring the profound disruptions in immune regulation. Conversely, in the minimal change disease case, a disease characterized by a blend of B- and T-cell-mediated immunity, the outcome was favorable. Conclusions: This paper underscores the critical importance of vigilance toward autoimmune flare-ups induced by BV in patients with concurrent autoimmune conditions, offering insights for tailored patient care.

4.
Toxicol Appl Pharmacol ; 483: 116820, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218205

RESUMEN

Carbon nanotubes (CNTs) are emerging pollutants of occupational and environmental health concern. While toxicological mechanisms of CNTs are emerging, there is paucity of information on their modulatory effects on susceptibility to infections. Here, we investigated cellular and molecular events underlying the effect of multi-walled CNT (MWCNT) exposure on susceptibility to Streptococcus pneumoniae infection in our 28-day sub-chronic exposure mouse model. Data indicated reduced phagocytic function in alveolar macrophages (AMs) from MWCNT-exposed lungs evidenced by lower pathogen uptake in 1-h infection assay. At 24-h post-infection, intracellular pathogen count in exposed AMs showed 2.5 times higher net increase (2-fold in vehicle- versus 5-fold in MWCNT-treated), indicating a greater rate of intracellular multiplication and/or survival due to MWCNT exposure. AMs from MWCNT-exposed lungs exhibited downregulation of pathogen-uptake receptors CD163, Phosphatidyl-serine receptor (Ptdsr), and Macrophage scavenger receptors class A type 1 (Msr1) and type 2 (MSr2). In whole lung, MWCNT exposure shifted the macrophage polarization state towards the immunosuppressive phenotype M2b and increased the CD11c+ dendritic cell population required to activate the adaptive immune response. Notably, the MWCNT pre-exposure dysregulated T-cell immunity, evidenced by diminished CD4 and Th17 response, and exacerbated Th1 and Treg responses (skewed Th17/Treg ratio), thereby favoring the pneumococcal infection. Overall, these findings indicated that MWCNT exposure compromises both innate and adaptive immunity leading to diminished host lung defense against pneumonia infection. To our knowledge, this is the first report on an immunomodulatory role of CNT pre-exposure on pneumococcal infection susceptibility due to dysregulation of both innate and adaptive immunity targets.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Neumonía Neumocócica , Ratones , Animales , Nanotubos de Carbono/toxicidad , Ratones Endogámicos C57BL , Pulmón , Inmunidad , Nanopartículas/toxicidad
5.
Cureus ; 15(11): e48824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106811

RESUMEN

Background Cell-mediated immunity (CMI), or specifically T-cell-mediated immunity, is proven to remain largely preserved against the variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including Omicron. The persistence of cell-mediated immune response in individuals longitudinally followed up for an extended period remains largely unelucidated. To address this, the current study was planned to study whether the effect of cell-mediated immunity persists after an extended period of convalescence or vaccination. Methods Whole blood specimens of 150 selected participants were collected and tested for Anti-SARS-CoV-2 Interferon-gamma (IFN-γ) response. Ex vivo SARS-CoV-2-specific interferon-gamma Enzyme-linked Immunospot (IFN-γ ELISpot) assay was carried out to determine the levels of virus-specific IFN-γ producing cells in individual samples. Findings Out of all the samples tested for anti-SARS-CoV-2 T-cell-mediated IFN-γ response, 78.4% of samples were positive. The median (interquartile range) spots forming units (SFU) per million levels of SARS-CoV-2-specific IFN-γ producing cells of the vaccinated and diagnosed participants was 336 (138-474) while those who were vaccinated but did not have the disease diagnosis was 18 (0-102); the difference between the groups was statistically significant. Since almost all the participants were vaccinated, a similar pattern of significance was observed when the diagnosed and the never-diagnosed participants were compared, irrespective of their vaccination status. Interpretations Cell-mediated immunity against SARS-CoV-2 persisted, irrespective of age and sex of the participant, for more than six months of previous exposure. Participants who had a history of diagnosed COVID-19 infection had better T-cell response compared to those who had never been diagnosed, in spite of being vaccinated.

6.
J Infect Dis ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740549

RESUMEN

We measured cytomegalovirus (CMV)-specific antibodies that neutralize epithelial cell infection (CMV-AbNEIs) in 101 CMV-seropositive kidney transplant recipients (KTRs) at baseline and post-transplant months 3 and 6. All the patients received antithymocyte globulin and 3-month valganciclovir prophylaxis. There were no significant differences in pre-transplant AbNEIs titers between KTRs that developed or did not develop any-level CMV infection or the composite of high-level infection and/or disease. One-year CMV infection-free survival was comparable between KTRs with or without pre-transplant CMV-AbNEIs. No differences were observed by months 3 and 6 either. We observed no protective role for CMV-AbNEIs among CMV-seropositive KTRs undergoing T-cell-depleting induction.

7.
Leuk Lymphoma ; 64(14): 2306-2315, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37732614

RESUMEN

B-cell targeted therapies, including anti-CD20 monoclonal antibodies (mAb) and Bruton's tyrosine kinase inhibitors (BTKi), further suppress antibody (Ab) response to vaccines in patients with chronic lymphocytic leukemia (CLL). We conducted a prospective cohort study of SARS-CoV-2 vaccination in 81 CLL patients receiving BTKi (n = 54), venetoclax (VEN, n = 9), or who were treatment naïve (TN, n = 18). Anti-spike Ab were detected in 53% of patients on BTKi post-primary series and 84% post-booster, 57% of patients on VEN post-primary series and 50% post-booster, and 67% of TN patients post-primary series and 87% post-booster. T-cell response to the primary series was independent of Ab response. At the time of booster, 12 patients interrupted BTKi (median 21 d, range 8-22) and 33 continued BTKi. Among patients with detectable Ab post-booster, those who interrupted BTKi (n = 10) had significantly higher Ab titers (median 7149 units/mL) compared with patients who continued BTKi (n = 27, median 2071 units/mL, p = .04).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/uso terapéutico , SARS-CoV-2 , Vacunación , Interrupción del Tratamiento
8.
Adv Sci (Weinh) ; 10(26): e2303049, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395451

RESUMEN

Antigen delivery based on non-virus-like particle self-associating protein nanoscffolds, such as Aquifex aeolicus lumazine synthase (AaLS), is limited due to the immunotoxicity and/or premature clearance of antigen-scaffold complex resulted from triggering unregulated innate immune responses. Here, using rational immunoinformatics prediction and computational modeling, we screen the T epitope peptides from thermophilic nanoproteins with the same spatial structure as hyperthermophilic icosahedral AaLS, and reassemble them into a novel thermostable self-assembling nanoscaffold RPT that can specifically activate T cell-mediated immunity. Tumor model antigen ovalbumin T epitopes and the severe acute respiratory syndrome coronavirus 2 receptor-binding domain are loaded onto the scaffold surface through the SpyCather/SpyTag system to construct nanovaccines. Compared to AaLS, RPT -constructed nanovaccines elicit more potent cytotoxic T cell and CD4+ T helper 1 (Th1)-biased immune responses, and generate less anti-scaffold antibody. Moreover, RPT significantly upregulate the expression of transcription factors and cytokines related to the differentiation of type-1 conventional dendritic cells, promoting the cross-presentation of antigens to CD8+ T cells and Th1 polarization of CD4+ T cells. RPT confers antigens with increased stability against heating, freeze-thawing, and lyophilization with almost no antigenicity loss. This novel nanoscaffold offers a simple, safe, and robust strategy for boosting T-cell immunity-dependent vaccine development.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Inmunidad Celular , Linfocitos T Citotóxicos , Antígenos de Neoplasias
9.
Front Immunol ; 14: 1146500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234151

RESUMEN

Primary antibody deficiencies, such as common variable immunodeficiency (CVID), are heterogenous disease entities consisting of primary hypogammaglobulinemia and impaired antibody responses to vaccination and natural infection. CVID is the most common primary immunodeficiency in adults, presenting with recurrent bacterial infections, enteropathy, autoimmune disorders, interstitial lung diseases and increased risk of malignancies. Patients with CVID are recommended to be vaccinated against SARS-CoV-2, but there are relatively few studies investigating humoral and cellular responses to immunization. We studied the dynamics of humoral and cell-mediated immunity responses up to 22 months in 28 patients with primary immunodeficiency and three patients with secondary immunodeficiency receiving ChAdOx1, BNT162b2 and mRNA-1273 COVID-19 vaccines. Despite inadequate humoral response to immunization, we demonstrate a robust T cell activation likely protecting from severe COVID-19.


Asunto(s)
COVID-19 , Inmunodeficiencia Variable Común , Enfermedades de Inmunodeficiencia Primaria , Humanos , Adulto , Vacunas contra la COVID-19 , Linfocitos T , Vacuna BNT162 , Estudios de Seguimiento , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
10.
Vaccines (Basel) ; 11(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36992131

RESUMEN

The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.

11.
J Immunol Methods ; 515: 113443, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842524

RESUMEN

Antigen (ag)-specific T cell analysis is an important step for investigation of cellular immunity in many settings, such as infectious diseases, cancer and vaccines. Multiparameter flow cytometry has advantages in studying both the rarity and heterogeneity of these cells. In the cellular immunologist's toolbox, the expression of activation-induced markers (AIM) following antigen exposure has made possible the study and sorting of ag-specific T cells without using human leukocyte antigen (HLA)-multimers. In parallel, assessing the cytokine profile of responding T cells would support a more comprehensive description of the ongoing immune response by providing information related to cell function, such as polarization and effector activity. Here, a method and flow cytometry panel were optimized to combine the detection of activated CD4+ and CD8+ T cells in a TCR-dependent manner with the evaluation of cytokine production by intracellular staining, without affecting the positivity of activation markers. In particular, the expression of CD134 (OX40) and CD69 have been tested in conjunction with intracellular (ic) CD137 (4-1BB) to detect SARS-CoV-2 Spike protein-specific activated T cells. In our setting, CD134 provided minimal contribution to detect the pool of AIM+ T cells, whereas a key role was described for ic-CD69 which was co-expressed with ic-CD137 in both CD4+ and CD8+ lymphocytes. Moreover, the analysis of TCR-triggered cytokine-producing T cells (IFNγ, TNFα and IL-2 were assessed) further confirmed the capacity of ic-CD69 to identify functionally responsive antigen-specific T cells which were often largely negative or weakly positive for CD134 expression. In parallel, the use of CD45RA, CCR7 and CXCR5 allowed us to describe the T cell matuarion curve and detect T follicular helper (Tfh) CD4+ cells, including the antigen specific activated subsets. In conclusion, we optimized a method and flow cytometry panel combining assessment of activation induced markers and intracellular cytokines that will be useful for measuring TCR stimulation-dependent activation of CD4+ and CD8+ T cells.


Asunto(s)
COVID-19 , Citocinas , Humanos , Citocinas/metabolismo , Citometría de Flujo , SARS-CoV-2/metabolismo , Activación de Linfocitos , COVID-19/diagnóstico , Linfocitos T CD8-positivos , Antígenos , Receptores de Antígenos de Linfocitos T , Linfocitos T CD4-Positivos
12.
Front Immunol ; 14: 1063069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798135

RESUMEN

Purpose: We aim to investigate the effect of sustained hyperglycemia on corneal epithelial wound healing, ocular surface and systemic immune response, and microbiome indices in diabetic mice compared to controls after alkaline chemical injury of the eye. Methods: Corneal alkaline injury was induced in the right eye of Ins2Akita (Akita) mice and wild-type mice. The groups were observed at baseline and subsequently days 0, 3, and 7 after injury. Corneal re-epithelialization was observed under slit lamp with fluorescein staining using a cobalt blue light filter. Enucleated cornea specimens were compared at baseline and after injury for changes in cornea thickness under hematoxylin and eosin staining. Tear cytokine and growth factor levels were measured using protein microarray assay and compared between groups and time points. Flow cytometry was conducted on peripheral blood and ocular surface samples to determine CD3+CD4+ cell count. Fecal samples were collected, and gut microbiota composition and diversity pattern were measured using shotgun sequencing. Results: Akita mice had significantly delayed corneal wound healing compared to controls. This was associated with a reduction in tear levels of vascular endothelial growth factor A, angiopoietin 2, and insulin growth factor 1 on days 0, 3, and 7 after injury. Furthermore, there was a distinct lack of upregulation of peripheral blood and ocular surface CD3+CD4+ cell counts in response to injury in Akita mice compared to controls. This was associated with a reduction in intestinal microbiome diversity indices in Akita mice compared to controls after injury. Specifically, there was a lower abundance of Firmicutes bacterium M10-2 in Akita mice compared to controls after injury. Conclusion: In diabetic mice, impaired cornea wound healing was associated with an inability to mount systemic and local immune response to ocular chemical injury. Baseline and post-injury differences in intestinal microbial diversity and abundance patterns between diabetic mice and controls may potentially play a role in this altered response.


Asunto(s)
Lesiones de la Cornea , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Diabetes Mellitus Experimental/complicaciones , Córnea , Lesiones de la Cornea/complicaciones , Cicatrización de Heridas
13.
Front Cell Infect Microbiol ; 12: 987692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159645

RESUMEN

Talaromyces marneffei (T. marneffei) is an opportunistic pathogen. Patients with inborn errors of immunity (IEI) have been increasingly diagnosed with T. marneffei in recent years. The disseminated infection of T. marneffei can be life-threatening without timely and effective antifungal therapy. Rapid and accurate pathogenic microbiological diagnosis is particularly critical for these patients. A total of 505 patients with IEI were admitted to our hospital between January 2019 and June 2022, among whom T. marneffei was detected in 6 patients by metagenomic next-generation sequencing (mNGS), and their clinical and immunological characteristics were summarized. We performed a systematic literature review on T. marneffei infections with published immunodeficiency-related gene mutations. All patients in our cohort were confirmed to have genetic mutations in IL12RB1, IFNGR1, STAT1, STAT3, and CD40LG. T. marneffei was detected in both the blood and lymph nodes of P1 with IL12RB1 mutations, and the clinical manifestations were serious and included recurrent fever, weight loss, severe anemia, splenomegaly and lymphadenopathy, all requiring long-term antifungal therapy. These six patients received antifungal treatment, which relieved symptoms and improved imaging findings. Five patients survived, while one patient died of sepsis after hematopoietic stem cell transplantation. The application of mNGS methods for pathogen detection in IEI patients and comparison with traditional diagnosis methods were investigated. Traditional diagnostic methods and mNGS tests were performed simultaneously in 232 patients with IEI. Compared to the traditional methods, the sensitivity and specificity of mNGS in diagnosing T. marneffei infection were 100% and 98.7%, respectively. The reporting time for T. marneffei detection was approximately 26 hours by mNGS, 3-14 days by culture, and 6-11 days by histopathology. T. marneffei infection was first reported in IEI patients with IL12RB1 gene mutation, which expanded the IEI lineage susceptible to T. marneffei. For IEI patients with T. marneffei infection, we highlight the application of mNGS in pathogenic detection. mNGS is recommended as a front-line diagnostic test for rapidly identifying pathogens in complex and severe infections.


Asunto(s)
Antifúngicos , Secuenciación de Nucleótidos de Alto Rendimiento , Antifúngicos/uso terapéutico , China , Humanos , Micosis , Talaromyces , Tecnología
14.
Vaccines (Basel) ; 10(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36016254

RESUMEN

The induction of T cell-mediated immunity is crucial in vaccine development. The most effective vaccine is likely to employ both cellular and humoral immune responses. The efficacy of a vaccine depends on T cells activated by antigen-presenting cells. T cells also play a critical role in the duration and cross-reactivity of vaccines. Moreover, pre-existing T-cell immunity is associated with a decreased severity of infectious diseases. Many technical and delivery platforms have been designed to induce T cell-mediated vaccine immunity. The immunogenicity of vaccines is enhanced by controlling the kinetics and targeted delivery. Viral vectors are attractive tools that enable the intracellular expression of foreign antigens and induce robust immunity. However, it is necessary to select an appropriate viral vector considering the existing anti-vector immunity that impairs vaccine efficacy. mRNA vaccines have the advantage of rapid and low-cost manufacturing and have been approved for clinical use as COVID-19 vaccines for the first time. mRNA modification and nanomaterial encapsulation can help address mRNA instability and translation efficacy. This review summarizes the T cell responses of vaccines against various infectious diseases based on vaccine technologies and delivery platforms and discusses the future directions of these cutting-edge platforms.

15.
BMC Med ; 20(1): 230, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35858844

RESUMEN

BACKGROUND: The protective effect of T cell-mediated immunity against influenza virus infections in natural settings remains unclear, especially in seasonal epidemics. METHODS: To explore the potential of such protection, we analyzed the blood samples collected longitudinally in a community-based study and covered the first wave of pandemic H1N1 (pH1N1), two subsequent pH1N1 epidemics, and three seasonal H3N2 influenza A epidemics (H3N2) for which we measured pre-existing influenza virus-specific CD4 and CD8 T cell responses by intracellular IFN-γ staining assay for 965 whole blood samples. RESULTS: Based on logistic regression, we found that higher pre-existing influenza virus-specific CD4 and CD8 T cell responses were associated with lower infection odds for corresponding subtypes. Every fold increase in H3N2-specific CD4 and CD8 T cells was associated with 28% (95% CI 8%, 44%) and 26% (95% CI 8%, 41%) lower H3N2 infection odds, respectively. Every fold increase in pre-existing seasonal H1N1 influenza A virus (sH1N1)-specific CD4 and CD8 T cells was associated with 28% (95% CI 11%, 41%) and 22% (95% CI 8%, 33%) lower pH1N1 infection odds, respectively. We observed the same associations for individuals with pre-epidemic hemagglutination inhibition (HAI) titers < 40. There was no correlation between pre-existing influenza virus-specific CD4 and CD8 T cell response and HAI titer. CONCLUSIONS: We demonstrated homosubtypic and cross-strain protection against influenza infections was associated with T cell response, especially CD4 T cell response. These protections were independent of the protection associated with HAI titer. Therefore, T cell response could be an assessment of individual and population immunity for future epidemics and pandemics, in addition to using HAI titer.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Estudios de Cohortes , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología
16.
Tuberculosis (Edinb) ; 135: 102224, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35763913

RESUMEN

Pathogenic mycobacteria induce and accelerate blood vessel formation driven by extensive inflammation during granuloma formation, which is a central feature of mycobacterial pathogenesis. Tumor necrosis factor-alpha (TNF-α) enhances the expression of vascular endothelial growth factor (VEGF) and glutamic acid-leucine-arginine (ELR+) chemokines, which are potent inducers of vascularization. Most of the reported research work contends that VEGF growth factor induces neovascularization in human tuberculosis (TB) patients, but the evidence is inconclusive. Considerable ambiguity exists concerning the factors responsible for miliary tuberculosis. To identify such factors, we proposed an alternative explanation that could be found in miliary tuberculosis (MTB) cases. We performed a comparative analysis of angiogenic factors TNF-α, VEGF, and angiogenic ELR+ CXC and CC chemokine ligands in extrapulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB) patients. To observe the relationship of these factors with the severity of bacterial burden, guinea pigs were infected with Mycobacterium tuberculosis (M.tb) and levels of the angiogenic factors were examined at different time intervals. Expression of these factors also exhibited a significant positive correlation with bacterial burden in other organs like the spleen, liver, and lymph nodes. We demonstrated statistical data on bacterial burden at different time points following the dissemination of infection in guinea pigs. In this study, we observed that there was a stimulated increase in the expression of ELR+ chemokines and VEGF in EPTB patients as compared to PTB patients. Following increased dissemination, the host immune response clears bacteria from the lungs during disease progression in guinea pigs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Miliar , Tuberculosis Pulmonar , Proteínas Adaptadoras Transductoras de Señales , Animales , Moléculas de Adhesión Celular , Quimiocinas , Guanilato-Quinasas , Cobayas , Humanos , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular
17.
Front Immunol ; 13: 869990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529867

RESUMEN

The emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it more difficult to prevent the virus from spreading despite available vaccines. Reports of breakthrough infections and decreased capacity of antibodies to neutralize variants raise the question whether current vaccines can still protect against COVID-19 disease. We studied the dynamics and persistence of T cell responses using activation induced marker (AIM) assay and Th1 type cytokine production in peripheral blood mononuclear cells obtained from BNT162b2 COVID-19 mRNA vaccinated health care workers and COVID-19 patients. We demonstrate that equally high T cell responses following vaccination and infection persist at least for 6 months against Alpha, Beta, Gamma, and Delta variants despite the decline in antibody levels.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Leucocitos Mononucleares , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
18.
Semin Immunopathol ; 44(5): 697-707, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35505129

RESUMEN

Glioblastoma is a highly aggressive brain tumor with limited treatment options. Several major challenges have limited the development of novel therapeutics, including the extensive heterogeneity of tumor cell states within each glioblastoma and the ability of glioma cells to diffusely infiltrate into neighboring healthy brain tissue, including the contralateral hemisphere. A T cell-mediated immune response could deal with these challenges based on the ability of polyclonal T cell populations to recognize diverse tumor antigens and perform surveillance throughout tissues. Here we will discuss the major pathways that inhibit T cell-mediated immunity against glioblastoma, with an emphasis on receptor-ligand systems by which glioma cells and recruited myeloid cells inhibit T cell function. A related challenge is that glioblastomas tend to be poorly infiltrated by T cells, which is not only caused by inhibitory molecular pathways but also currently utilized drugs, in particular high-dose corticosteroids that kill activated, proliferating T cells. We will discuss innovative approaches to induce glioblastoma-directed T cell responses, including neoantigen-based vaccines and sophisticated CAR T cell approaches that can target heterogeneous glioblastoma cell populations. Finally, we will propose a conceptual framework for the future development of T cell-based immunotherapies for glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Antígenos de Neoplasias , Glioblastoma/terapia , Humanos , Inmunidad Celular , Inmunoterapia , Ligandos
19.
Vaccines (Basel) ; 11(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36679860

RESUMEN

In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.

20.
Brain Behav Immun Health ; 18: 100371, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34761242

RESUMEN

Ongoing research has strongly suggested the role the immune system plays in the pathogenesis of neuropathic pain. T cells appear to be one of the main regulators of the immune system with many mediators appearing to promote or suppress pain resolution. Limited effective therapies are available for treatment of neuropathic pain. Treatments available appear to modulate specific T cell with altered ratios present 3 months post treatment and parallels clinical improvement. This further supports the neuro-immune basis for neuropathic pain chronicity. Identification of novel immune mediators involved in pain development may suggest new target areas in treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA