Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mar Life Sci Technol ; 6(3): 502-514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219681

RESUMEN

As one of the common malignancies that threaten human life, bladder cancer occurs frequently with a high mortality rate in the world, due to its invasion, recurrence and drug resistance. Natural products from marine microorganisms are becoming the hotspots in discovery of new candidate drug entities, especially in the area of cancer. Brefeldin A (BFA) is a natural Arf-GEFs inhibitor, but due to the low aqueous solubility, strong toxicity, and poor bioavailability, it is urgent to conduct structural optimization research. Herein, a new BFA pyridine acrylate derivative CHNQD-01281 with improved solubility was prepared and found to exert moderate to strong antiproliferative activity on a variety of human cancer cell lines. It was noteworthy that CHNQD-01281 was most sensitive to two bladder cancer cell lines T24 and J82 (IC50 = 0.079 and 0.081 µmol/L) with high selectivity index (SI = 14.68 and 14.32), suggesting a superior safety to BFA. In vivo studies revealed that CHNQD-01281 remarkably suppressed tumor growth in a T24 nude mice xenograft model (TGI = 52.63%) and prolonged the survival time (ILS = 68.16%) in an MB49 allogeneic mouse model via inducing infiltration of cytotoxic T cells. Further mechanism exploration indicated that CHNQD-01281 regulated both EGFR/PI3K/AKT and EGFR/ERK pathways and mediated the chemotactic effect of chemokines on immune effector cells. Overall, CHNQD-01281 may serve as a potential therapeutic agent for bladder cancer through multiple mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00246-w.

3.
J Leukoc Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226137

RESUMEN

Pathogenic CD8+T cells play an essential role in neuroinflammation and neural injury, which leads to the progression of inflammatory neurological disorders. Thus, blocking the infiltration of CD8+T cells is necessary for the treatment of neuroinflammatory diseases. Our previous study demonstrated that Astragalus polysaccharides (APS) could significantly reduce the infiltration of CD8+T cells in experimental autoimmune encephalomyelitis (EAE) mice. However, the mechanism by which APS suppress CD8+T cell infiltration remains elusive. In this study, we further found that APS could reduce the CD8+T cell infiltration in EAE and lipopolysaccharide (LPS)-induced neuroinflammatory model. Furthermore, we established the mouse brain endothelial cell (bEnd.3) inflammatory injury model by interleukin-1ß (IL-1ß) or LPS in vitro. The results showed that APS treatment downregulated the expression of vascular cell adhesion molecule1 (VCAM1) to decrease the adhesion of CD8+T cells to bEnd.3 cells. APS also upregulated the expression of zonula occluden-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) to reduce the trans-endothelial migration of CD8+T cells. The PI3K/AKT signaling pathway might mediate this protective effect of APS on bEnd.3 cells against inflammatory injury. In addition, we demonstrated the protective effect of APS on the integrity of brain endothelial cells in an LPS-induced neuroinflammatory model. In summary, our results indicate that APS can reduce peripheral CD8+T cell infiltration via enhancing the barrier function of brain endothelial cells, it may be a potential for the prevention of neuroinflammatory diseases.

4.
J Cancer Res Clin Oncol ; 150(8): 403, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198311

RESUMEN

OBJECTIVE: This study aimed to establish a uniform standard for the interpretation of HER2 gene and protein statuses in intrahepatic cholangiocarcinoma (ICC). We also intended to explore the clinical pathological characteristics, molecular features, RNA expression and immune microenvironment of HER2-positive ICC. METHODS: We analyzed a cohort of 304 ICCs using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to identify HER2 status. Comprehensive analyses of the clinicopathological, molecular genetic, and RNA expression characterizations of ICCs with varying HER2 statuses were performed using next-generation sequencing. We further investigated the tumor microenvironment of ICCs with different HER2 statuses using IHC and multiplex immunofluorescence staining. RESULTS: HER2/CEP17 ratio of ≥ 2.0 and HER2 copy number ≥ 4.0; or HER2 copy number ≥ 6.0 were setup as FISH positive criteria. Based on this criterion, 13 (4.27%, 13/304) samples were classified as having HER2 amplification. The agreement between FISH and IHC results in ICC was poor. HER2-amplified cases demonstrated a higher tumor mutational burden compared to non-amplified cases. No significant differences were observed in immune markers between the two groups. However, an increased density of CD8 + CTLA4 + and CD8 + FOXP3 + cells was identified in HER2 gene-amplified cases. CONCLUSION: FISH proves to be more appropriate as the gold standard for HER2 evaluation in ICC. HER2 gene-amplified ICCs exhibit poorer prognosis, higher mutational burden, and T cell exhaustion and immune suppressed microenvironment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Amplificación de Genes , Mutación , Receptor ErbB-2 , Microambiente Tumoral , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/inmunología , Femenino , Receptor ErbB-2/genética , Persona de Mediana Edad , Masculino , Anciano , Hibridación Fluorescente in Situ , Adulto , Biomarcadores de Tumor/genética , Linfocitos T/inmunología , Linfocitos T/patología , Pronóstico , Agotamiento de Células T
5.
ACS Nano ; 18(34): 23001-23013, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150454

RESUMEN

The currently available immune checkpoint therapy shows a disappointing therapeutic efficacy for glioblastoma multiforme (GBM), and it is of great importance to discover better immune checkpoints and develop innovative targeting strategies. The discovered metabolic immune checkpoint ecto-5-nucleotidase (CD73) in a tumor contributes to its immune evasion due to the dysregulation of extracellular adenosine (ADO), which significantly inhibits the function of antitumor T cells and increases the activity of immunosuppressive cells. Herein, we drastically inhibit the expression of CD73 to reduce the production of ADO by using versatile Au@Cu2-xSe nanoparticles (ACS NPs). ACS NPs can decrease the expression of CD73 by alleviating the tumor hypoxia through their Fenton-like reaction to weaken the ADO-driven immunosuppression for enhancing antitumor T cell infiltration and activity of GBM. The copper ions (Cu2+) released from ACS NPs can chelate with disulfide, leading to the formation of cytotoxic bis(N,N-diethyldithiocarbamate)-copper complex (CuET), which can be combined with radiotherapy to recruit more antitumor T cells to infiltrate into the tumor site. Based on the inhibition of CD73 to promote the infiltration and activity of antitumor T cells, a cascade of enhancing GBM immunotherapy effects can be achieved. The significant increase in CD8+ T and CD4+ T cells within the tumor and the memory T cells in the spleen effectively reduces tumor size by 92%, which demonstrates the excellent efficacy of immunotherapy achieved by a combination of metabolic immune checkpoint CD73 inhibition with chemoradiotherapy. This work demonstrates that modulation of CD73-mediated tumor immunosuppression is an important strategy of improving the outcome of GBM immunotherapy.


Asunto(s)
5'-Nucleotidasa , Glioblastoma , Inmunoterapia , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/antagonistas & inhibidores , Animales , Humanos , Ratones , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Cobre/química , Cobre/farmacología , Oro/química , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Nanopartículas del Metal/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Adenosina/química , Adenosina/farmacología
6.
Expert Rev Clin Immunol ; : 1-10, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39114885

RESUMEN

OBJECTIVES: Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS: In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS: We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION: These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.

7.
Transl Oncol ; 49: 102081, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182361

RESUMEN

Triple-negative breast cancer (TNBC) is a challenging subtype with unclear biological mechanisms. Recently, the transcription factor androgen receptor (AR) and its regulation of the DLGAP5 gene have gained attention in TNBC pathogenesis. In this study, we found a positive correlation between high AR expression and TNBC cell proliferation and growth. Furthermore, we confirmed DLGAP5 as a critical downstream regulator of AR with high expression in TNBC tissues. Knockdown of DLGAP5 significantly inhibited TNBC cell proliferation, migration, and invasion. AR was observed to directly bind to the DLGAP5 promoter, enhancing its transcriptional activity and suppressing the activation of the p53 signaling pathway. In vivo experiments further validated that downregulation of AR or DLGAP5 inhibited tumor growth and enhanced CD8+T cell infiltration. This study highlights the crucial roles of AR and DLGAP5 in TNBC growth and immune cell infiltration. Taken together, AR inhibits the p53 signaling pathway by promoting DLGAP5 expression, thereby impacting CD8+T cell infiltration in TNBC.

8.
Immunol Res ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078518

RESUMEN

Our previous bioinformatics analysis has revealed that Rab-interacting lysosomal protein-like 2 (RILPL2) is associated with tumor immune microenvironment in non-small cell lung cancer (NSCLC). In our study, we collected 140 patients with primary NSCLC to verify the RILPL2 expression and its prognostic value, the relationship between RILPL2 expression and CD4+, CD8+T cell infiltration. A total of 140 patients who had been diagnosed with primary NSCLC (including 66 lung adenocarcinomas and 74 lung squamous cell carcinomas) were enrolled in our study. Immunohistochemical (IHC) staining was performed to analyze the expression of RILPL2, CD4, and CD8 in these patients. Compared with peri-cancer tissues, the RILPL2 expression in NSCLC tissues was significantly lower (P < 0.0001). RILPL2 expression was significantly related to clinical stage (P = 0.019), and low RILPL2 expression indicated higher stage. Low RILPL2 expression predicted worse overall survival (OS) in NSCLC patients (P = 0.017). Correlational analyses revealed that RILPL2 expression was significantly positively correlated with CD4+T cell infiltration in NSCLC (R = 0.294, P < 0.001), LUAD subgroup (R = 0.256, P = 0.038), and LUSC subgroup (R = 0.333, P = 0.004); RILPL2 expression was also significantly positively correlated with CD8+ T cell infiltration in NSCLC (R = 0.263, P = 0.002), LUAD subgroup (R = 0.280, P = 0.023), and LUSC subgroup (R = 0.250, P = 0.031). In conclusion, RILPL2 expression was downregulated in NSCLC; low RILPL2 expression was significantly related to higher stage and worse prognosis; RILPL2 expression was significantly positively correlated with CD4+, CD8+T cell infiltration.

9.
Mol Imaging Biol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060882

RESUMEN

PURPOSE: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. PROCEDURE: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. RESULTS: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. CONCLUSIONS: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

10.
Front Immunol ; 15: 1352632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035007

RESUMEN

Introduction: This study investigates the role of Fibroblast Activation Protein (FAP)-positive cancer-associated fibroblasts (FAP+CAF) in shaping the tumor immune microenvironment, focusing on its association with immune cell functionality and cytokine expression patterns. Methods: Utilizing immunohistochemistry, we observed elevated FAP+CAF density in metastatic versus primary renal cell carcinoma (RCC) tumors, with higher FAP+CAF correlating with increased T cell infiltration in RCC, a unique phenomenon illustrating the complex interplay between tumor progression, FAP+CAF density, and immune response. Results: Analysis of immune cell subsets in FAP+CAF-rich stromal areas further revealed significant correlations between FAP+ stroma and various T cell types, particularly in RCC and non-small cell lung cancer (NSCLC). This was complemented by transcriptomic analyses, expanding the range of stromal and immune cell subsets interrogated, as well as to additional tumor types. This enabled evaluating the association of these subsets with tumor infiltration, tumor vascularization and other components of the tumor microenvironment. Our comprehensive study also encompassed cytokine, angiogenesis, and inflammation gene signatures across different cancer types, revealing heterogeneous cellular composition, cytokine expressions and angiogenic profiles. Through cytokine pathway profiling, we explored the relationship between FAP+CAF density and immune cell states, uncovering potential immunosuppressive circuits that limit anti-tumor activity in tumor-resident immune cells. Conclusions: These findings underscore the complexity of tumor biology and the necessity for personalized therapeutic and patient enrichment approaches. The insights gathered from FAP+CAF prevalence, immune infiltration, and gene signatures provide valuable perspectives on tumor microenvironments, aiding in future research and clinical strategy development.


Asunto(s)
Fibroblastos Asociados al Cáncer , Inmunoterapia , Serina Endopeptidasas , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Inmunoterapia/métodos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Citocinas/metabolismo , Endopeptidasas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Gelatinasas/metabolismo , Gelatinasas/genética , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/terapia , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo
11.
Res Sq ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746162

RESUMEN

Purpose: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

12.
EBioMedicine ; 104: 105167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805852

RESUMEN

BACKGROUND: Tumour-infiltrating lymphocytes (TILs) are crucial for effective immune checkpoint blockade (ICB) therapy in solid tumours. However, ∼70% of these tumours exhibit poor lymphocyte infiltration, rendering ICB therapies less effective. METHODS: We developed a bioinformatics pipeline integrating multiple previously unconsidered factors or datasets, including tumour cell immune-related pathways, copy number variation (CNV), and single tumour cell sequencing data, as well as tumour mRNA-seq data and patient survival data, to identify targets that can potentially improve T cell infiltration and enhance ICB efficacy. Furthermore, we conducted wet-lab experiments and successfully validated one of the top-identified genes. FINDINGS: We applied this pipeline in solid tumours of the Cancer Genome Atlas (TCGA) and identified a set of genes in 18 cancer types that might potentially improve lymphocyte infiltration and ICB efficacy, providing a valuable drug target resource to be further explored. Importantly, we experimentally validated SUN1, which had not been linked to T cell infiltration and ICB therapy previously, but was one of the top-identified gene targets among 3 cancer types based on the pipeline, in a mouse colon cancer syngeneic model. We showed that Sun1 KO could significantly enhance antigen presentation, increase T-cell infiltration, and improve anti-PD1 treatment efficacy. Moreover, with a single-cell multiome analysis, we identified subgene regulatory networks (sub-GRNs) showing Stat proteins play important roles in enhancing the immune-related pathways in Sun1-KO cancer cells. INTERPRETATION: This study not only established a computational pipeline for discovering new gene targets and signalling pathways in cancer cells that block T-cell infiltration, but also provided a gene target pool for further exploration in improving lymphocyte infiltration and ICB efficacy in solid tumours. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Biología Computacional , Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor , Neoplasias , Transducción de Señal , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Humanos , Biología Computacional/métodos , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167180, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38653356

RESUMEN

The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component ß-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.


Asunto(s)
Señalización del Calcio , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Fibrosis , Técnicas de Sustitución del Gen , Proteína Wnt4 , Animales , Ratones , Transición Epitelial-Mesenquimal/genética , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Señalización del Calcio/genética , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Vía de Señalización Wnt , Células Epiteliales/metabolismo , Células Epiteliales/patología , Riñón/patología , Riñón/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
14.
Radiother Oncol ; 194: 110213, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38458258

RESUMEN

BACKGROUND AND PURPOSE: Poor penetration of transferred T cells represents a critical factor impeding the development of adoptive cell therapy in solid tumors. We demonstrated that iRGD-antiCD3 modification promoted both T cell infiltration and activation in our previous work. Interest in low-dose radiotherapy has recently been renewed due to its immuno-stimulatory effects including T cell recruitment. This study aims to explore the synergistic effects between low-dose radiotherapy and iRGD-antiCD3-modified T cells. MATERIALS AND METHODS: Flow cytometry was performed to assess the expression of iRGD receptors and chemokines. T cell infiltration was evaluated by immunohistofluorescence and in vivo real-time fluorescence imaging and antitumor effects were investigated by in vivo bioluminescence imaging in the gastric cancer peritoneal metastasis mouse model. RESULTS: We found that 2 Gy irradiation upregulated the expression of all three iRGD receptors and T-cell chemokines. The addition of 2 Gy low-dose irradiation boosted the accumulation and penetration of iRGD-antiCD3-modified T cells in peritoneal tumor nodules. Combining 2 Gy low-dose irradiation with iRGD-antiCD3-modified T cells significantly inhibited tumor growth and prolonged survival in the peritoneal metastasis mouse model with a favorable safety profile. CONCLUSION: Altogether, we demonstrated that low-dose radiotherapy could improve the antitumor potency of iRGD-antiCD3-modified T cells by promoting T cell infiltration, providing a rationale for exploring low-dose radiotherapy in combination of other adoptive T cell therapies in solid tumors.


Asunto(s)
Neoplasias Gástricas , Linfocitos T , Animales , Ratones , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Linfocitos T/efectos de la radiación , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos , Dosificación Radioterapéutica , Oligopéptidos , Neoplasias Peritoneales/radioterapia , Neoplasias Peritoneales/secundario , Línea Celular Tumoral , Femenino , Terapia Combinada
15.
J Exp Clin Cancer Res ; 43(1): 38, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38303018

RESUMEN

Tumor-infiltrating T cells recognize, attack, and clear tumor cells, playing a central role in antitumor immune response. However, certain immune cells can impair this response and help tumor immune escape. Therefore, exploring the factors that influence T-cell infiltration is crucial to understand tumor immunity and improve therapeutic effect of cancer immunotherapy. The use of single-cell RNA sequencing (scRNA-seq) allows the high-resolution analysis of the precise composition of immune cells with different phenotypes and other microenvironmental factors, including non-immune stromal cells and the related molecules in the tumor microenvironment of various cancer types. In this review, we summarized the research progress on T-cell infiltration and the crosstalk of other stromal cells and cytokines during T-cell infiltration using scRNA-seq to provide insights into the mechanisms regulating T-cell infiltration and contribute new perspectives on tumor immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Citocinas , Inmunoterapia , Neoplasias/terapia , Fenotipo , Microambiente Tumoral , Análisis de la Célula Individual
16.
Cell Rep ; 43(2): 113796, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38367240

RESUMEN

The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin ß1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.


Asunto(s)
Integrina beta1 , Neoplasias , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos , Concentración de Iones de Hidrógeno , Integrina beta1/genética , Metiltransferasas/genética , Linfocitos T , Microambiente Tumoral
17.
Cells ; 13(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334672

RESUMEN

Although strokes are frequent and severe, treatment options are scarce. Plasminogen activators, the only FDA-approved agents for clot treatment (tissue plasminogen activators (tPAs)), are used in a limited patient group. Moreover, there are few approaches for handling the brain's inflammatory reactions to a stroke. The orphan G protein-coupled receptor 55 (GPR55)'s connection to inflammatory processes has been recently reported; however, its role in stroke remains to be discovered. Post-stroke neuroinflammation involves the central nervous system (CNS)'s resident microglia activation and the infiltration of leukocytes from circulation into the brain. Additionally, splenic responses have been shown to be detrimental to stroke recovery. While lymphocytes enter the brain in small numbers, they regularly emerge as a very influential leukocyte subset that causes secondary inflammatory cerebral damage. However, an understanding of how this limited lymphocyte presence profoundly impacts stroke outcomes remains largely unclear. In this study, a mouse model for transient middle cerebral artery occlusion (tMCAO) was used to mimic ischemia followed by a reperfusion (IS/R) stroke. GPR55 inactivation, with a potent GPR55-specific antagonist, ML-193, starting 6 h after tMCAO or the absence of the GPR55 in mice (GPR55 knock out (GPR55ko)) resulted in a reduced infarction volume, improved neurological outcomes, and decreased splenic responses. The inhibition of GPR55 with ML-193 diminished CD4+T-cell spleen egress and attenuated CD4+T-cell brain infiltration. Additionally, ML-193 treatment resulted in an augmented number of regulatory T cells (Tregs) in the brain post-tMCAO. Our report offers documentation and the functional evaluation of GPR55 in the brain-spleen axis and lays the foundation for refining therapeutics for patients after ischemic attacks.


Asunto(s)
Accidente Cerebrovascular Isquémico , Receptores de Cannabinoides , Animales , Humanos , Ratones , Encéfalo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Activadores Plasminogénicos , Reperfusión , Bazo
18.
Sci Bull (Beijing) ; 69(6): 803-822, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38320897

RESUMEN

Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Terapia Combinada , Inmunoterapia
19.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339348

RESUMEN

FtsJ RNA 2'-O-methyltransferase 1 (FTSJ1) is a member of the methyltransferase superfamily and is involved in the processing and modification of ribosomal RNA. We herein demonstrate that FTSJ1 favors TNBC progression. The knockdown of FTSJ1 inhibits TNBC cell proliferation and development, induces apoptosis of cancer cells, and increases the sensitivity of TNBC cells to T-cell-mediated cytotoxicity. Furthermore, the high expression of FTSJ1 in TNBC attenuates CD8+T cell infiltration in the tumor microenvironment (TME) correlated with poorer prognosis for clinical TNBC patients. In this study, we establish that FTSJ1 acts as a tumor promotor, is involved in cancer immune evasion, and may serve as a potential immunotherapy target in TNBC.

20.
Heliyon ; 10(1): e23582, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187248

RESUMEN

The involvement of the mitochondrial ribosomal protein 13 (MRPL13) gene in the development of adenocarcinoma has been previously reported. However, the clinicopathological significance of MRPL13 in squamous cell carcinoma (SCC) remains poorly understood. To gain insight into the clinicopathological and immunological implications of MRPL13 expression in SCC, we conducted a bioinformatic analysis utilizing various available databases, including TIMER 2.0, Xiantao academic tool and TISIDB, attempting to evaluate the abnormal expression, prognosis and immunological correlation of MRPL13 in the pan-SCC setting. Subsequently, we conducted experimental verification using an esophageal squamous cell carcinoma (ESCC) tissue array subjected to multiplexed immunofluorescent (mIF) staining. The ESCC tissue array we used consists of 93 dots of ESCC and 86 dots of matched adjacent normal tissues (ANT). Data from in silico analyses showed that MRPL13 mRNA is significantly up-regulated and correlated with infiltration of CD8+ T cells in pan-SCC. However, in silico analyses did not support the prognostic role of MRPL13 in SCC. Consistently, data from the ESCC tissue array showed that MRPL13 was remarkably elevated in ESCC tissues relative to ANT in stroma, which was controlled by pan-cytokeratin (pan-CK) staining. In the epithelia, no significant difference was identified between ESCC and ANT. Furthermore, MRPL13 expression markedly correlated with the infiltration of CD8+ T cells in the stromal region but not in the epithelial region. Prognostically, no significant association was observed between MRPL13 expression and overall survival, regardless of epithelial or stromal section. Through these pan-SCC analyses, we have expanded the understanding of MRPL13 previously reported, in particular, underscoring the immunological involvement of MRPL13 in the tumor microenvironment of SCC that has been under-recognized before, suggesting that MRPL13 may regulate the infiltration of CD8+ T cells into the SCC microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA