Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1367680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633455

RESUMEN

Increasing occurrences of Microcystis surface scum have been observed in the context of global climate change and the increase in anthropogenic pollution, causing deteriorating water quality in aquatic ecosystems. Previous studies on scum formation mainly focus on the buoyancy-driven floating process of larger Microcystis colonies, neglecting other potential mechanisms. To study the non-buoyancy-driven rapid flotation of Microcystis, we here investigate the floating processes of two strains of single-cell species (Microcystis aeruginosa and Microcystis wesenbergii), which are typically buoyant, under light conditions (150 µmol photons s-1 m-2). Our results showed that M. wesenbergii exhibited fast upward migration and formed surface scum within 4 hours, while M. aeruginosa did not form visible scum throughout the experiments. To further explore the underlying mechanism of these processes, we compared the dissolved oxygen (DO), extracellular polymeric substance (EPS) content, and colony size of Microcystis in different treatments. We found supersaturated DO and the formation of micro-bubbles (50-200 µm in diameter) in M. wesenbergii treatments. M. aeruginosa produces bubbles in small quantities and small sizes. Additionally, M. wesenbergii produced more EPS and tended to aggregate into larger colonies. M. wesenbergii had much more derived-soluble extracellular proteins and polysaccharides compared to M. aeruginosa. At the same time, M. wesenbergii contains abundant functional groups, which was beneficial to the formation of agglomerates. The surface scum observed in M. wesenbergii is likely due to micro-bubbles attaching to the surface of cell aggregates or becoming trapped within the colony. Our study reveals a species-specific mechanism for the rapid floatation of Microcystis, providing novel insights into surface scum formation as well as succession of cyanobacterial species.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366257

RESUMEN

Prediction of the complex cyanobacteria-environment interactions is vital for understanding harmful bloom formation. Most previous studies on these interactions considered specific properties of cyanobacterial cells as representative for the entire population (e.g. growth rate, mortality, and photosynthetic capacity (Pmax)), and assumed that they remained spatiotemporally unchanged. Although, at the population level, the alteration of such traits can be driven by intraspecific competition, little is known about how traits and their plasticity change in response to environmental conditions and affect the bloom formation. Here we test the hypothesis that intraspecific variations in Pmax of cyanobacteria (Microcystis spp.) play an important role in its population dynamics. We coupled a one-dimensional hydrodynamic model with a trait-based phytoplankton model to simulate the effects of physical drivers (turbulence and turbidity) on the Pmax of Microcystis populations for a range of dynamic conditions typical for shallow eutrophic lakes. Our results revealed that turbulence acts as a directional selective driver for changes in Pmax. Depending on the intensity of daily-periodic turbulence, representing wind-driven mixing, a shift in population-averaged phenotypes occurred toward either low Pmax, allowing the population to capture additional light in the upper layers, or high Pmax, enhancing the efficiency of light utilization. Moreover, we observed that a high intraspecific diversity in Pmax accelerated the formation of surface scum by up to more than four times compared to a lower diversity. This study offers insights into mechanisms by which cyanobacteria populations respond to turbulence and underscores the significance of intraspecific variations in cyanobacterial bloom formation.


Asunto(s)
Cianobacterias , Microcystis , Lagos/microbiología , Monitoreo del Ambiente , Cianobacterias/fisiología , Microcystis/fisiología , Fitoplancton , Eutrofización
3.
Water Res ; 194: 116908, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596491

RESUMEN

Light availability is an important driver of algal growth and for the formation of surface blooms. The formation of Microcystis surface scum decreases the transparency of the water column and influences the vertical distribution of light intensity. Only few studies analysed the interactions between the dynamics of surface blooms and the light distribution in the water column. Particularly the effect of light attenuation caused by Microcystis colonies (self-shading) on the formation of surface scum has not been explored. In the present study, we simulate the effect of variable cell concentration of Microcystis colonies on the vertical distribution of light in the water column based on experimental estimates of the extinction coefficient of Microcystis colonies. The laboratory observations indicated that higher cell concentration of Microcystis enhance the light attenuation in water column and promotes surface scum formation. We extended an existing model for the light-driven migration of Microcystis by introducing the effect of self-shading and simulated the dynamics of vertical migration for different cell concentrations and different colonial morphologies. The simulation results show that high cell concentrations of Microcystis promote surface scum formation, as well as its persistence throughout diel photoperiods. Large and tight Microcystis colonies facilitate scum formation, while small and loose colonies increase scum stability and persistence. This study reveals a positive feedback regulation of Microcystis surface scum formation and stability by self-shading and provides novel insights into the underlying mechanisms.


Asunto(s)
Microcystis , Retroalimentación , Laboratorios , Agua
4.
Water Res ; 183: 116091, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32623244

RESUMEN

Harmful cyanobacterial blooms pose a serious environmental threat to freshwater lakes and reservoirs. Investigating the dynamics of toxic bloom-forming cyanobacterial genus Microcystis is a challenging task due to its huge spatiotemporal heterogeneity. The hydroacoustic technology allows for rapid scanning of the water column synoptically and has a significant potential for rapid, non-invasive in situ quantification of aquatic organisms. The aim of this work is to develop a reliable cost-effective method for the accurate quantification of the biomass (B) of gas-bearing cyanobacterium Microcystis in water bodies using a high-frequency scientific echosounder. First, we showed that gas-bearing Microcystis colonies are much stronger backscatterers than gas-free phytoplanktonic algae. Then, in the tank experiments, we found a strong logarithmic relationship between the volume backscattering coefficient (sv) and Microcystis B proxies, such as Microcystis-bound chlorophyll a (Chl aMicro) and particle volume concentration. The sv/B ratio remained unchanged over a wide range of B concentrations when the same source of Microcystis material was used. Our measurements in Lake Dianchi (China) also revealed strong logarithmic relationship between sv and Chl aMicro. The biomass-calibrated echosounder was used to study the diurnal variability of Microcystis B in the lake. We found a sharp increase in the cyanobacterium B and sv/Chl aMicro ratio near the water surface during the daytime and more uniform distribution of these parameters during the nighttime. We argue that the variations in B and sv/Chl aMicro ratio could be associated with temporal changes in thermal stratification and turbulent mixing. Our data suggest that the sv/Chl aMicro ratio positively correlates with (i) the percentage of larger colonies in population and/or (ii) the content of free gas in cells. The last properties allow Microcystis colonies to attain rapid floating, which enables them to concentrate at the water surface at conducive ambient conditions. The sv/Chl aMicro ratio can be a new important variable reflecting the ability of Microcystis colonies to migrate vertically. Monitoring of this ratio may help to determine the early warning threshold for Microcystis scum formation. The proposed acoustic technology for in situ quantification of Microcystis biomass can be a powerful tool for accurate monitoring and assessment of this cyanobacterium at high spatiotemporal resolution in water bodies.


Asunto(s)
Cianobacterias , Microcystis , China , Clorofila A , Monitoreo del Ambiente , Lagos
5.
Sci Total Environ ; 728: 138727, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361580

RESUMEN

Cyanobacteria of the genus Microcystis produces surface scum that negatively affects water quality in inland waters. This scum layer can be disintegrated and vertically dispersed by external forces (e.g., wind mixing), followed by reformation of surface scum as buoyant Microcystis colonies migrate upward. However, the recovery dynamics of Microcystis surface scum following a strong mixing event have rarely been studied. Here, we used a tank experiment to investigate the process of Microcystis surface scum recovery after a mixing event with focus on dynamics of colonies of different size classes and their contribution to that process. Microcystis colony size distribution and colony volume concentration was measured using a laser in-situ scattering and transmissometry instrument. The dynamics of Microcystis in the water column and upward colony migration velocity were strongly dependent on colony size. Larger colonies (>180 µm) with fast upward migration rates contributed the most to surface scum formation shortly after turbulence subsided. The contribution of slowly migrating smaller colonies to scum formation was observed over notably longer time. The estimated floating velocities of large colonies ranged 0.15 to 0.46 m h-1 depending on colony size and were 5-15 times higher than those of smaller colonies (~0.03 m h-1). The changes in colony size distribution of Microcystis in the water column reflect the dynamics of surface scum. Analysis of size distribution of Microcystis colonies can be used for better understanding and prediction of Microcystis surface scum development in water bodies.


Asunto(s)
Cianobacterias , Microcystis , Vehículos a Motor , Agua , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA