Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cancers (Basel) ; 16(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199574

RESUMEN

Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39017815

RESUMEN

PURPOSE: CD133, a cancer stem cells (CSC) marker, has been reported to be associated with treatment resistance and worse survival in triple-negative breast cancer (BC). However, the clinical relevance of CD133 expression in ER-positive/HER2-negative (ER + /HER2-) BC, the most abundant subtype, remains unknown. METHODS: The BC cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1904) and The Cancer Genome Atlas (TCGA, n = 1065) were used to obtain biological variables and gene expression data. RESULTS: Epithelial cells were the exclusive source of CD133 gene expression in a bulk BC. CD133-high ER + /HER2- BC was associated with CD24, NOTCH1, DLL1, and ALDH1A1 gene expressions, as well as with WNT/ß-Catenin, Hedgehog, and Notch signaling pathways, all characteristic for CSC. Consistent with a CSC phenotype, CD133-low BC was enriched with gene sets related to cell proliferation, such as G2M Checkpoint, MYC Targets V1, E2F Targets, and Ki67 gene expression. CD133-low BC was also linked with enrichment of genes related to DNA repair, such as BRCA1, E2F1, E2F4, CDK1/2. On the other hand, CD133-high tumors had proinflammatory microenvironment, higher activity of immune cells, and higher expression of genes related to inflammation and immune response. Finally, CD133-high tumors had better pathological complete response after neoadjuvant chemotherapy in GSE25066 cohort and better disease-free survival and overall survival in both TCGA and METABRIC cohorts. CONCLUSION: CD133-high ER + /HER2- BC was associated with CSC phenotype such as less cell proliferation and DNA repair, but also with enhanced inflammation, better response to neoadjuvant chemotherapy and better prognosis.

3.
Vet Immunol Immunopathol ; 274: 110790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901326

RESUMEN

CD25, the interleukin-2 receptor α-chain, is expressed on cell surfaces of different immune cells and is commonly used for phenotyping of regulatory T cells (Tregs). CD25 has essential roles in the maintenance of hemostasis and immune tolerance and Treg cell involvement has been shown in human diseases and murine models for allergy, autoimmunity, cancer, chronic inflammation, and many others. In horses, a cross-reactive anti-human CD25 antibody has previously been used for characterizing Tregs. Here, we developed monoclonal antibodies (mAbs) to equine CD25 and compared their staining pattern with the anti-human CD25 antibody by flow cytometry. The comparison of the two reagents was performed by two separate analyses in independent laboratories. Overall, similar staining patterns for equine peripheral blood lymphocytes were obtained with the anti-human CD25 antibody and equine CD25 mAb 15-1 in both laboratories. Both reagents identified comparable CD4+CD25+ and CD4+CD25+FOXP3+ percentages after stimulation of peripheral blood mononuclear cells (PBMC) with pokeweed mitogen. However, when compared to the anti-human CD25 antibody, the equine CD25 mAb 15-1 resulted in a better staining intensity of the equine CD25+ cells and increased the percentages of Tregs and other CD25+ cells ex vivo and after culturing of PBMC without stimulation. In summary, the equine CD25 mAbs provide new, improved reagents for Tregs and CD25+ cell phenotyping in horses.


Asunto(s)
Anticuerpos Monoclonales , Citometría de Flujo , Subunidad alfa del Receptor de Interleucina-2 , Linfocitos T Reguladores , Caballos/inmunología , Animales , Linfocitos T Reguladores/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Anticuerpos Monoclonales/inmunología , Citometría de Flujo/veterinaria , Humanos , Leucocitos Mononucleares/inmunología
4.
Stem Cells Transl Med ; 13(8): 763-775, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38811016

RESUMEN

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) possess the intrinsic ability to differentiate into diverse cellular lineages, marking them as potent instruments in regenerative medicine. Nonetheless, the proclivity of these stem cells to generate teratomas post-transplantation presents a formidable obstacle to their therapeutic utility. In previous studies, we identified an array of cell surface proteins specifically expressed in the pluripotent state, as revealed through proteomic analysis. Here we focused on EPHA2, a protein found to be abundantly present on the surface of undifferentiated mouse ESCs and is diminished upon differentiation. Knock-down of Epha2 led to the spontaneous differentiation of mouse ESCs, underscoring a pivotal role of EPHA2 in maintaining an undifferentiated cell state. Further investigations revealed a strong correlation between EPHA2 and OCT4 expression during the differentiation of both mouse and human PSCs. Notably, removing EPHA2+ cells from mouse ESC-derived hepatic lineage reduced tumor formation after transplanting them into immune-deficient mice. Similarly, in human iPSCs, a larger proportion of EPHA2+ cells correlated with higher OCT4 expression, reflecting the pattern observed in mouse ESCs. Conclusively, EPHA2 emerges as a potential marker for selecting undifferentiated stem cells, providing a valuable method to decrease tumorigenesis risks after stem-cell transplantation in regenerative treatments.


Asunto(s)
Diferenciación Celular , Factor 3 de Transcripción de Unión a Octámeros , Receptor EphA2 , Animales , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Humanos , Ratones , Receptor EphA2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Biomarcadores/metabolismo
5.
Genesis ; 62(2): e23592, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38587195

RESUMEN

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Asunto(s)
Pollos , Células Madre Mesenquimatosas , Animales , Embrión de Pollo , Membrana Corioalantoides , Diferenciación Celular/fisiología , Células Cultivadas
6.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585981

RESUMEN

Purpose: CD133, a cancer stem cells (CSC) marker, has been reported to be associated with treatment resistance and worse survival in triple-negative breast cancer (BC). However, the clinical relevance of CD133 expression in ER-positive/HER2-negative (ER+/HER2-) BC, the most abundant subtype, remains unknown. Methods: The BC cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1904) and The Cancer Genome Atlas (TCGA, n = 1065) were used to obtain biological variables and gene expression data. Results: Epithelial cells were the exclusive source of CD133 gene expression in a bulk BC. CD133-high ER+/HER2- BC was associated with CD24, NOTCH1, DLL1, and ALDH1A1 gene expressions, as well as with WNT/ß-Catenin, Hedgehog, and Notchsignaling pathways, all characteristic for CSC. Consistent with a CSC phenotype, CD133-low BC was enriched with gene sets related to cell proliferation, such as G2M Checkpoint, MYC Targets V1, E2F Targets, and Ki67 gene expression. CD133-low BC was also linked with enrichment of genes related to DNA repair, such as BRCA1, E2F1, E2F4, CDK1/2. On the other hand, CD133-high tumors had proinflammatory microenvironment, higher activity of immune cells, and higher expression of genes related to inflammation and immune response. Finally, CD133-high tumors had better pathological complete response after neoadjuvant chemotherapy in GSE25066 cohort and better disease-free survival and overall survival in both TCGA and METABRIC cohorts. Conclusion: CD133-high ER+/HER2- BC was associated with CSC phenotype such as less cell proliferation and DNA repair, but also with enhanced inflammation, better response to neoadjuvant chemotherapy and better prognosis.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 391-418, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38369829

RESUMEN

Tumor is one of the most serious diseases that threaten human health and social development, and it is the second most common cause of death worldwide. The latest statistics show that malignant tumors have surpassed cardiovascular disease as the leading cause of death in developed countries. Drug resistance, metastasis, and recurrence of tumors continue to present urgent challenges in clinical treatment. Tumor stem cells (TSCs) are a specific subset of cells that possess high capabilities of self-renewal, differentiation potential, tumorigenicity and drug resistance. They are resistant to non-specific treatment methods such as chemotherapy and radiotherapy, and play a crucial role in tumor initiation, metastasis, drug resistance, and recurrence. The surface markers, stemness maintenance mechanisms, microenvironment, and metabolic reprogramming of TSCs have become areas of intense research focus. The latest research results provide novel targets and strategies for the identification of TSCs and targeted therapy. This paper reviews the surface markers (CD133, CD44, etc.), self-renewal and epithelial mesenchymal transition (EMT) signaling pathways (Wnt/ß-catenin, Hedgehog, etc.), microenvironment characteristics, metabolic reprogramming (glycolysis, oxidative phosphorylation, etc.) and their roles in the initiation, development, metastasis and drug resistance of TSCs.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Diferenciación Celular , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Microambiente Tumoral
8.
Stem Cells Transl Med ; 13(1): 83-99, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37935630

RESUMEN

Cone cell death is a characteristic shared by various retinal degenerative disorders, such as cone-rod dystrophy, Stargardt disease, achromatopsia, and retinitis pigmentosa. This leads to conditions like color blindness and permanently impaired visual acuity. Stem cell therapy focused on photoreceptor replacement holds promise for addressing these conditions. However, identifying surface markers that aid in enriching retinal progenitor cells (RPCs) capable of differentiating into cones remains a complex task. In this study, we employed single-cell RNA sequencing to scrutinize the transcriptome of developing retinas in C57BL/6J mice. This revealed the distinctive expression of somatostatin receptor 2 (Sstr2), a surface protein, in late-stage RPCs exhibiting the potential for photoreceptor differentiation. In vivo lineage tracing experiments verified that Sstr2+ cells within the late embryonic retina gave rise to cones, amacrine and horizontal cells during the developmental process. Furthermore, Sstr2+ cells that were isolated from the late embryonic mouse retina displayed RPC markers and exhibited the capability to differentiate into cones in vitro. Upon subretinal transplantation into both wild-type and retinal degeneration 10 (rd10) mice, Sstr2+ cells survived and expressed cone-specific markers. This study underscores the ability of Sstr2 to enrich late-stage RPCs primed for cone differentiation to a large extent. It proposes the utility of Sstr2 as a biomarker for RPCs capable of generating cones for transplantation purposes.


Asunto(s)
Receptores de Somatostatina , Retina , Degeneración Retiniana , Animales , Ratones , Ratones Endogámicos C57BL , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Células Madre
9.
Stem Cell Res Ther ; 14(1): 367, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093391

RESUMEN

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS: By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS: In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION: Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología , Calcio/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo
10.
Biology (Basel) ; 12(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37887022

RESUMEN

Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.

11.
J Extracell Vesicles ; 12(4): e12318, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973758

RESUMEN

Extracellular vesicles (EVs) are ideal for liquid biopsy, but distinguishing cancer cell-derived EVs and subpopulations of biomarker-containing EVs in body fluids has been challenging. Here, we identified that the glycoproteins CD147 and CD98 define subpopulations of EVs that are distinct from classical tetraspanin+ EVs in their biogenesis. Notably, we identified that CD147+ EVs have substantially higher microRNA (miRNA) content than tetraspanin+ EVs and are selectively enriched in miRNA through the interaction of CD147 with heterogeneous nuclear ribonucleoprotein A2/B1. Studies using mouse xenograft models showed that CD147+ EVs predominantly derive from cancer cells, whereas the majority of tetraspanin+ EVs are not of cancer cell origin. Circulating CD147+ EVs, but not tetraspanin+ EVs, were significantly increased in prevalence in patients with ovarian and renal cancers as compared to healthy individuals and patients with benign conditions. Furthermore, we found that isolating miRNAs from body fluids by CD147 immunocapture increases the sensitivity of detecting cancer cell-specific miRNAs, and that circulating miRNAs isolated by CD147 immunocapture more closely reflect the tumor miRNA signature than circulating miRNAs isolated by conventional methods. Collectively, our findings reveal that CD147 defines miRNA-enriched, cancer cell-derived EVs, and that CD147 immunocapture could be an effective approach to isolate cancer-derived miRNAs for liquid biopsy.


Asunto(s)
MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Neoplasias , Animales , Ratones , Humanos , MicroARNs/genética , Vesículas Extracelulares/genética , Biomarcadores , Biopsia Líquida
12.
Heliyon ; 9(2): e13464, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36865479

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.

13.
Am J Respir Cell Mol Biol ; 69(1): 45-56, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36927333

RESUMEN

Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , COVID-19/metabolismo , Fibroblastos/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Fibrosis , Proteínas de la Membrana/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36797609

RESUMEN

AIMS: Investigate the immunomodulatory effects of bisphenols in the THP-1 cell line and peripheral blood mononuclear cells in response to lipopolysaccharide (LPS) activation or to phorbol 12-myristate 13-acetate (PMA) and ionomycin. BACKGROUND: We have previously demonstrated the usefulness of the evaluation of RACK1 expression as a link between endocrine disrupting activity and the immunotoxic effect of xenobiotics. We demonstrated that while BPA and BPAF reduced RACK1 expression, BPS was able to increase it. OBJECTIVE: Bisphenol A (BPA) is one of the most commonly used chemicals in the manufacturing of polycarbonate plastics and plastic consumer products. Its endocrine disrupting (ED) potential and changes in European regulations have led to replacing BPA in many uses with structurally similar chemicals, like bisphenol AF (BPAF) and bisphenol S (BPS). However, emerging data indicated that bisphenol analogues may not be safer than BPA both in toxic effects and ED potential. METHODS: THP-1 cell line and peripheral blood mononuclear cells were activated with lipopolysaccharide (LPS) or with phorbol 12-myristate 13-acetate (PMA) and ionomycin. RESULTS: BPA and BPAF decreased LPS-induced expression of surface markers and the release of pro-inflammatory cytokines, while BPS increased LPS-induced expression of CD86 and cytokines. BPA, BPAF, and BPS affected PMA/ionomycin-induced T helper differentiation and cytokine release with gender-related alterations in some parameters investigated. CONCLUSION: Data confirm that bisphenols can modulate immune cell differentiation and activation, further supporting their immunotoxic effects.

15.
Exp Eye Res ; 227: 109368, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586549

RESUMEN

While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.


Asunto(s)
Coroides , Neuronas , Humanos , Antígeno CD146/metabolismo , Neuronas/metabolismo , Coroides/inervación , Fibras Nerviosas
16.
Cardiovasc Res ; 119(3): 743-758, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35880724

RESUMEN

AIMS: Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS: Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (ß-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 µM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and ß-gal with predominantly diploid content. CONCLUSION: Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.


Asunto(s)
Antioxidantes , Senescencia Celular , Animales , Ratones , Antioxidantes/farmacología , Envejecimiento/genética , Envejecimiento/metabolismo , Estrés Oxidativo , Miocardio/metabolismo
17.
Cells ; 11(16)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010615

RESUMEN

In the past, proinflammatory CD11b+Ly6Chi monocytes were predominantly considered as a uniform population. However, recent investigations suggests that this population is far more diverse than previously thought. For example, in mouse models of Entamoeba (E.) histolytica and Listeria (L.) monocytogenes liver infections, it was shown that their absence had opposite effects. In the former model, it ameliorated parasite-dependent liver injury, whereas in the listeria model it exacerbated liver pathology. Here, we analyzed Ly6Chi monocytes from the liver of both infection models at transcriptome, protein, and functional levels. Paralleled by E. histolytica- and L. monocytogenes-specific differences in recruitment-relevant chemokines, both infections induced accumulation of Ly6C+ monocytes at infection sites. Transcriptomic analysis revealed a high similarity between monocytes from naïve and parasite-infected mice and a clear proinflammatory phenotype of listeria-induced monocytes. This was further reflected by the upregulation of M2-related transcription factors (e.g., Mafb, Nr4a1, Fos) and higher CD14 expression by Ly6Chi monocytes in the E. histolytica infection model. In contrast, monocytes from the listeria infection model expressed M1-related transcription factors (e.g., Irf2, Mndal, Ifi204) and showed higher expression of CD38, CD74, and CD86, as well as higher ROS production. Taken together, proinflammatory Ly6Chi monocytes vary considerably depending on the causative pathogen. By using markers identified in the study, Ly6Chi monocytes can be further subdivided into different populations.


Asunto(s)
Monocitos , Parásitos , Animales , Antígenos Ly/metabolismo , Hígado/metabolismo , Ratones , Monocitos/metabolismo , Parásitos/metabolismo , Factores de Transcripción/metabolismo
18.
Mol Neurobiol ; 59(9): 5902-5924, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831555

RESUMEN

Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.


Asunto(s)
Melanoma , Moléculas de Adhesión de Célula Nerviosa , Adhesión Celular , Sistemas de Liberación de Medicamentos , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Procesamiento Proteico-Postraduccional
19.
Fish Shellfish Immunol ; 127: 446-454, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792345

RESUMEN

The agranulocytes in the Pacific oyster Crassostrea gigas are a group of haemocytes that are significantly different from semi-granulocytes and granulocytes on the morphology. Agranulocytes are the smallest haemocytes characterized by a spherical shape, the largest ratio of nucleus to cytoplasm, and no granules in the cytoplasm. The lack of unique cell surface markers impedes the isolation of agranulocytes from total haemocytes. Previous transcriptome sequencing analysis of three subpopulations of haemocytes revealed that a homologue of CD9 (designed as CgCD9) was highly expressed in agranulocytes of oyster C. gigas (data not shown). In the present study, CgCD9 was identified to share a similarity of 60% with other vertebrates CD9s, and it harbored a typical four transmembrane domain and a conserved Cys-Cys-Gly (CCG) motif. The mRNA transcript of CgCD9 was found to be highly expressed in agranulocytes, which was 6.63-fold (p < 0.05) and 3.68-fold (p < 0.05) of that in granulocytes and semi-granulocytes, respectively. A specific monoclonal antibody of CgCD9 (named 3D8) was successfully prepared by traditional hybridoma technology, and a single positive band at 25.2 kDa was detected in the haemocyte proteins by Western Blotting, indicating that this monoclonal antibody exhibited high specificity and sensitivity to CgCD9 protein. The ELISA positive value of 3D8 monoclonal antibody to recognize agranulocytes, semi-granulocytes and granulocytes was 17.35, 4.48 and 1.55, respectively, indicating that monoclonal antibody was specific to agranulocytes. Immunocytochemistry assay revealed that CgCD9 was specifically distributed on the membrane of agranulocytes. Using immunomagnetic beads coated with 3D8 monoclonal antibody, CgCD9+cells with a purity of 94.53 ± 5.60% were successfully isolated with a smaller diameter, a larger N:C ratio and no granules in cytoplasm, and could be primary culture in the modified L-15 medium in vitro. Collectively, these results suggested that CgCD9 was a specific cell surface marker for agranulocytes, which offered a tool for high-purity capture of agranulocytes from total haemocytes in C. gigas.


Asunto(s)
Crassostrea , Animales , Anticuerpos Monoclonales , Granulocitos , Hemocitos , Leucocitos Mononucleares
20.
Front Endocrinol (Lausanne) ; 13: 941166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903276

RESUMEN

Human stem cell-derived organoid culture enables the in vitro analysis of the cellular function in three-dimensional aggregates mimicking native organs, and also provides a valuable source of specific cell types in the human body. We previously established organoid models of the hypothalamic-pituitary (HP) complex using human pluripotent stem cells. Although the models are suitable for investigating developmental and functional HP interactions, we consider that isolated pituitary cells are also useful for basic and translational research on the pituitary gland, such as stem cell biology and regenerative medicine. To develop a method for the purification of pituitary cells in HP organoids, we performed surface marker profiling of organoid cells derived from human induced pluripotent stem cells (iPSCs). Screening of 332 human cell surface markers and a subsequent immunohistochemical analysis identified epithelial cell adhesion molecule (EpCAM) as a surface marker of anterior pituitary cells, as well as their ectodermal precursors. EpCAM was not expressed on hypothalamic lineages; thus, anterior pituitary cells were successfully enriched by magnetic separation of EpCAM+ cells from iPSC-derived HP organoids. The enriched pituitary population contained functional corticotrophs and their progenitors; the former responded normally to a corticotropin-releasing hormone stimulus. Our findings would extend the applicability of organoid culture as a novel source of human anterior pituitary cells, including stem/progenitor cells and their endocrine descendants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hormonas Adenohipofisarias , Células Madre Pluripotentes , Biomarcadores/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Organoides/metabolismo , Hipófisis/metabolismo , Hormonas Adenohipofisarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA