Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415092, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290153

RESUMEN

Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39226422

RESUMEN

In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.

3.
ACS Appl Mater Interfaces ; 16(32): 42198-42209, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39091093

RESUMEN

Rare-earth doped CeO2 materials find extensive application in high-temperature energy conversion devices such as solid oxide fuel cells and electrolyzers. However, understanding the complex relationship between structural and electrical properties, particularly concerning rare-earth ionic size and content, remains a subject of ongoing debate, with conflicting published results. In this study, we have conducted comprehensive long-range and local order structural characterization of Ce1-xLnxO2-x/2 samples (x ≤ 0.6; Ln = La, Nd, Sm, Gd, and Yb) using X-ray and neutron powder diffraction, Raman spectroscopy, and electron diffraction. The increase in the rare-earth dopant content leads to a progressive phase transformation from a disordered fluorite structure to a C-type ordered superstructure, accompanied by reduced ionic conductivity. Samples with low dopant content (x = 0.2) exhibit higher ionic conductivity in Gd3+ and Sm3+ series due to lower lattice cell distortion. Conversely, highly doped samples (x = 0.6) exhibit superior conductivity for larger rare-earth dopant cations. Thermogravimetric analysis confirms increased water uptake and proton conductivity with increasing dopant concentration, while the electronic conductivity remains relatively unaffected, resulting in reduced ionic transport numbers. These findings offer insights into the relationship between transport properties and defect-induced local distortions in rare-earth doped CeO2, suggesting the potential for developing new functional materials with mixed ionic oxide, proton, and electronic conductivity for high-temperature energy systems.

4.
Small ; : e2405940, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180267

RESUMEN

Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.

5.
Angew Chem Int Ed Engl ; 63(36): e202410255, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881320

RESUMEN

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3 % retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3 % retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

6.
Angew Chem Int Ed Engl ; 63(35): e202404330, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38878199

RESUMEN

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

7.
Angew Chem Int Ed Engl ; : e202409507, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896433

RESUMEN

Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.

8.
Angew Chem Int Ed Engl ; : e202408218, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923694

RESUMEN

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

9.
Entropy (Basel) ; 26(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920511

RESUMEN

Biorefinery plays a crucial role in the decarbonization of the current economic model, but its high investments and costs make its products less competitive. Identifying the best technological route to maximize operational synergies is crucial for its viability. This study presents a new superstructure model based on mixed integer linear programming to identify an ideal biorefinery configuration. The proposed formulation considers the selection and process scale adjustment, utility selection, and heat integration by heat cascade integration from different processes. The formulation is tested by a study where the impact of new technologies on energy efficiency and the total annualized cost of a sugarcane biorefinery is evaluated. As a result, the energy efficiency of biorefinery increased from 50.25% to 74.5% with methanol production through bagasse gasification, mainly due to its high heat availability that can be transferred to the distillery, which made it possible to shift the bagasse flow from the cogeneration to gasification process. Additionally, the production of DME yields outcomes comparable to methanol production. However, CO2 hydrogenation negatively impacts profitability and energy efficiency due to the significant consumption and electricity cost. Nonetheless, it is advantageous for surface power density as it increases biofuel production without expanding the biomass area.

10.
Small ; : e2403331, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898749

RESUMEN

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

11.
J Colloid Interface Sci ; 671: 779-789, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38833910

RESUMEN

The modulation of microstructures in conjugated polymers represents a viable strategy for enhancing photocatalytic efficiency, albeit hampered by complex processing techniques. Here, we present an uncomplicated, template-free method to synthesize polymeric photocatalysts, namely BCN(x)@PPy, featuring a hollow nanotube-nanocluster core-shell superstructure. This configuration is realized through intramolecular covalent crosslinking and synergistic intermolecular donor-acceptor (D-A) interactions between phenylene pyrene (PPy, D) nanotubes and poly([1,1'-biphenyl]-3-carbonitrile) (PBCN, A) nanoclusters. Interestingly, the optimized BCN2@PPy composite demonstrates remarkably enhanced performance for photocatalytic hydrogen evolution, with an efficiency of 14.7-fold higher than that of unmodified PPy nanotubes. Experimental and density functional theory calculations revealed that BCN(x)@PPy composites are conducive to shortening photogenerated exciton migration, facilitating charge separation and transfer, reducing nanoclusters aggregation or re-stacking, and providing sufficient catalytically active sites, all contributing to the heightened efficiency in photocatalysis. These insights underscore the potential for precise molecular adjustments in conjugated polymers, advancing artificial photosynthesis.

12.
Angew Chem Int Ed Engl ; 63(33): e202408292, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818627

RESUMEN

Redox-active azo compounds are emerging as promising cathode materials due to their multi-electron redox capacity and fast redox response. However, their practical application is often limited by low output voltage and poor thermal stability. Herein, we use a heteroatomic substitution strategy to develop 4,4'-azopyridine. This modification results in a 350 mV increase in reduction potential compared to traditional azobenzene, increasing the energy density at the material level from 187 to 291 Wh kg-1. The introduced heteroatoms not only raise the melting point of azo compounds from 68 °C to 112 °C by forming an intermolecular hydrogen-bond network but also improves electrode kinetics by reducing energy band gaps. Moreover, 4,4'-azopyridine forms metal-ligand complexes with Zn2+ ions, which further self-assemble into a robust superstructure, acting as a molecular conductor to facilitate charge transfer. Consequently, the batteries display a good rate performance (192 mAh g-1 at 20 C) and an ultra-long lifespan of 60,000 cycles. Notably, we disclose that the depleted batteries spontaneously self-charge when exposed to air, marking a significant advancement in the development of self-powered aqueous systems.

13.
Anal Bioanal Chem ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739158

RESUMEN

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 µM, and the limit of detection is 17.5 µM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

14.
J Colloid Interface Sci ; 669: 723-730, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38735254

RESUMEN

The simultaneous intercalation of protons and Zn2+ ions in aqueous electrolytes presents a significant obstacle to the widespread adoption of aqueous zinc ion batteries (AZIBs) for large-scale use, a challenge that has yet to be overcome. To address this, we have developed a MnO2/tetramethylammonium (TMA) superstructure with an enlarged interlayer spacing, designed specifically to control H+/Zn2+ co-intercalation in AZIBs. Within this superstructure, the pre-intercalated TMA+ ions work as spacers to stabilize the layered structure of MnO2 cathodes and expand the interlayer spacing substantially by 28 % to 0.92 nm. Evidence from in operando pH measurements, in operando synchrotron X-ray diffraction, and X-ray absorption spectroscopy shows that the enlarged interlayer spacing facilitates the diffusion and intercalation of Zn2+ ions (which have a large ionic radius) into the MnO2 cathodes. This spacing also helps suppress the competing H+ intercalation and the formation of detrimental Zn4(OH)6SO4·5H2O, thereby enhancing the structural stability of MnO2. As a result, enhanced Zn2+ storage properties, including excellent capacity and long cycle stability, are achieved.

15.
ACS Nano ; 18(20): 13397-13405, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728672

RESUMEN

Integrating anion-redox capacity with orthodox cation-redox capacity is deemed as a promising solution for high-energy-density battery cathodes surmounting the present technical bottlenecks. However, the evolution of oxidized oxygen species during the electrochemical or chemical process easily jeopardizes the reversibility of oxygen redox and remains poorly understood. Herein, we showcase the gradual conversion of the π-interacting oxygen (localized hole states on O) to the σ-interacting oxygen upon resting at a high voltage for P3-type Na0.6Li0.2Mn0.8O2 with nominally stable ribbon-like superstructure, accompanied by the O-O dimerization and the local structural reorganization. We further pinpoint an abnormal Li+ migration process from the alkali-metal layer to the transition-metal layer for desodiated P3-Na0.6Li0.2Mn0.8O2, thereby leading to a partial reconstruction of the ribbon superstructure. The high-voltage plateau of oxygen-redox cathodes is concluded to be exclusively controlled by the oxygen stabilization mechanism rather than the superstructure ordering. In addition, there exists a kinetic competition between π and σ interaction during the uninterrupted electrochemical process.

16.
Small ; 20(35): e2310416, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38660815

RESUMEN

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.


Asunto(s)
Péptidos , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Humanos , Línea Celular Tumoral , Péptidos/química , Péptidos/farmacología , Ratones , Nanofibras/química
17.
Annu Rev Chem Biomol Eng ; 15(1): 81-103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594946

RESUMEN

This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation-based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning-and quantum computing-assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.


Asunto(s)
Algoritmos , Aprendizaje Automático , Teoría Cuántica
18.
Small ; 20(34): e2402058, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607256

RESUMEN

Chiral organic additives have unveiled the extraordinary capacity to form chiral inorganic superstructures, however, complex hierarchical structures have hindered the understanding of chiral transfer and growth mechanisms. This study introduces a simple hydrothermal synthesis method for constructing chiral cobalt superstructures with cysteine, demonstrating specific recognition of chiral molecules and outstanding electrocatalytic activity. The mild preparation conditions allow in situ tracking of chirality evolution in the chiral cobalt superstructure, offering unprecedented insights into the chiral transfer and amplification mechanism. The resulting superstructures exhibit a universal formation process applicable to other metal oxides, extending the understanding of chiral superstructure evolution. This work contributes not only to the fundamental understanding of chirality in self-assembled structures but also provides a versatile method for designing chiral inorganic nanomaterials with remarkable molecular recognition and electrocatalytic capabilities.

19.
J Colloid Interface Sci ; 667: 128-135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38631251

RESUMEN

The self-assembled carbon nitride quantum dots (CNQDs) has been largely advanced owing to the structure-relative photocatalytic activities, especially its electronic structure, which can be regulated by defects, functional groups, and doping. However, there are still issues such as wide band gaps for the assembles and severe recombination of photoinduced charges. Herein, we demonstrate the self-assembly of CNQDs into fusiform hollow superstructures (CNFHs), induced by hydrogen bonding between the terminal functional groups (-OH, -COOH, and -NH2). During the top-down assembly process, the hydrogen bonding dominates and initiates lateral cross-linking between adjacent CNQDs, which further twist into fusiform hollow structures. Benefitted greatly from the ultrathin and hollow nature of the superstructure that provides more exposed active sites, coupled with the introduction of phosphorus doping atoms into the framework induced narrowed band gap, CNFHs exhibits an 18-fold higher activity than the bulk counterpart toward photocatalytic hydrogen evolution after loading the CoP co-catalyst. This work presents a new platform to design and manipulate carbon nitride superstructures.

20.
J Maxillofac Oral Surg ; 23(2): 290-293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601256

RESUMEN

Treatment of edentulous and atrophic mandibular fractures is extremely difficult. Generally, mandibular fractures are repaired and fixed as internal fixation using a reconstruction plate or miniplates with intra- or extraoral approach. Few cases in which external fixation including a transmucosal fixation was performed have also been reported. We report a case of atrophic and edentulous mandibular fracture which was healed by the fixation using dental implants and implant-supported bridge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA