Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
BMC Med Imaging ; 24(1): 138, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858645

RESUMEN

BACKGROUND: This study aimed to investigate the alterations in structural integrity of superior longitudinal fasciculus subcomponents with increasing white matter hyperintensity severity as well as the relationship to cognitive performance in cerebral small vessel disease. METHODS: 110 cerebral small vessel disease study participants with white matter hyperintensities were recruited. According to Fazekas grade scale, white matter hyperintensities of each subject were graded. All subjects were divided into two groups. The probabilistic fiber tracking method was used for analyzing microstructure characteristics of superior longitudinal fasciculus subcomponents. RESULTS: Probabilistic fiber tracking results showed that mean diffusion, radial diffusion, and axial diffusion values of the left arcuate fasciculus as well as the mean diffusion value of the right arcuate fasciculus and left superior longitudinal fasciculus III in high white matter hyperintensities rating group were significantly higher than those in low white matter hyperintensities rating group (p < 0.05). The mean diffusion value of the left superior longitudinal fasciculus III was negatively related to the Montreal Cognitive Assessment score of study participants (p < 0.05). CONCLUSIONS: The structural integrity injury of bilateral arcuate fasciculus and left superior longitudinal fasciculus III is more severe with the aggravation of white matter hyperintensities. The structural integrity injury of the left superior longitudinal fasciculus III correlates to cognitive impairment in cerebral small vessel disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anciano , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/etiología
2.
Behav Brain Funct ; 20(1): 12, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778325

RESUMEN

BACKGROUND: Subjective cognitive decline (SCD) is an early stage of dementia linked to Alzheimer's disease pathology. White matter changes were found in SCD using diffusion tensor imaging, but there are known limitations in voxel-wise tensor-based methods. Fixel-based analysis (FBA) can help understand changes in white matter fibers and how they relate to neurodegenerative proteins and multidomain behavior data in individuals with SCD. METHODS: Healthy adults with normal cognition were recruited in the Northeastern Taiwan Community Medicine Research Cohort in 2018-2022 and divided into SCD and normal control (NC). Participants underwent evaluations to assess cognitive abilities, mental states, physical activity levels, and susceptibility to fatigue. Neurodegenerative proteins were measured using an immunomagnetic reduction technique. Multi-shell diffusion MRI data were collected and analyzed using whole-brain FBA, comparing results between groups and correlating them with multidomain assessments. RESULTS: The final enrollment included 33 SCD and 46 NC participants, with no significant differences in age, sex, or education between the groups. SCD had a greater fiber-bundle cross-section than NC (pFWE < 0.05) at bilateral frontal superior longitudinal fasciculus II (SLFII). These white matter changes correlate negatively with plasma Aß42 level (r = -0.38, p = 0.01) and positively with the AD8 score for subjective cognitive complaints (r = 0.42, p = 0.004) and the Hamilton Anxiety Rating Scale score for the degree of anxiety (Ham-A, r = 0.35, p = 0.019). The dimensional analysis of FBA metrics and blood biomarkers found positive correlations of plasma neurofilament light chain with fiber density at the splenium of corpus callosum (pFWE < 0.05) and with fiber-bundle cross-section at the right thalamus (pFWE < 0.05). Further examination of how SCD grouping interacts between the correlations of FBA metrics and multidomain assessments showed interactions between the fiber density at the corpus callosum with letter-number sequencing cognitive score (pFWE < 0.01) and with fatigue to leisure activities (pFWE < 0.05). CONCLUSION: Based on FBA, our investigation suggests white matter structural alterations in SCD. The enlargement of SLFII's fiber cross-section is linked to plasma Aß42 and neuropsychiatric symptoms, which suggests potential early axonal dystrophy associated with Alzheimer's pathology in SCD. The splenium of the corpus callosum is also a critical region of axonal degeneration and cognitive alteration for SCD.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Sustancia Blanca , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Biomarcadores/sangre , Persona de Mediana Edad , Anciano , Imagen de Difusión Tensora/métodos , Péptidos beta-Amiloides/sangre , Adulto , Estudios de Cohortes , Autoevaluación Diagnóstica
3.
World Neurosurg ; 185: e1136-e1143, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493894

RESUMEN

BACKGROUND AND OBJECTIVES: Several studies are currently exploring the anatomical origins of superior longitudinal fascicule (SLF) 2 and SLF-3, which are components of the frontoparietal network. This study aimed to achieve optimum visualization of the anatomical corridors of these fibers using Photoshop filters. METHODS: Four postmortem brain hemispheres were dissected in accordance with the method proposed by Klingler and Ludwig. Dissections were performed under a surgical microscope (Carl Zeiss AG, Oberkochen, Germany) at 4× and 40× magnification. All dissections were documented at each stage using a professional digital camera (Canon EOS 600D) with a macro 100 mm lens (Canon), ring-flash attachment (Canon), and professional tripod (Manfrotto 808 C4). We aimed to improve the visual quality of the images by avoiding monotone using various the features and filters in Photoshop. RESULTS: SLF-2 originates from the angular gyrus (Brodmann area [BA] 39) in the right hemisphere and has been observed to project fibers from BA7 and BA19 and toward BA8, 9, 10, and 46. Further, these fibers traverse from the depths of BA40, 2, 3, 1, and 6 as they progress. SLF-2 also projects fibers from the supramarginal gyrus in the left hemisphere. SLF-3 lies between the supramarginal gyrus and the inferior frontal lobe in both the right and left hemispheres. CONCLUSIONS: The visual descriptions of the dissections were enriched after using Photoshop to avoid monotony. Increasing the visual quality with Photoshop features enable us to gain a better understanding of these pathways. Additionally, it facilitates the comprehension of the symptoms associated with pathology. We hope these results will further aid in reducing the occurrence of postoperative complications.


Asunto(s)
Lóbulo Parietal , Humanos , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/diagnóstico por imagen , Cadáver , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos
4.
Cortex ; 174: 125-136, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520766

RESUMEN

Illusory neuropsychiatric symptoms such as hallucinations or the feeling of a presence (FOP) can occur in diffuse brain lesion or dysfunction, in psychiatric diseases as well as in healthy individuals. Their occurrence due to focal brain lesions is rare, most probably due to underreporting, which limits progress in understanding their underlying mechanisms and anatomical determinants. In this single case study, an 86-year-old patient experienced, in the context of an acute right central opercular ischemic stroke, visual hallucinatory symptoms (including palinopsia), differently lateralized auditory hallucinations and FOP. This unusual clinical constellation could be precisely documented and illustrated while still present, allowing a realistic and immersive visual experience validated by the patient. The acute stroke appeared to be their most plausible cause (after exclusion of other etiologies). Furthermore, accurate analysis of tractographic data suggested that disruption in the posterior bundle of the superior longitudinal fasciculus connecting the stroke lesion to the inferior parietal lobule was the anatomical substrate explaining the FOP and, indirectly, also hallucinations through whiter matter involvement, in coherence with existing literature. We could finally elaborate on symptoms taxonomy and phenomenology (e.g., polyopic heautoscopy, hallucinatory FOP, etc), and on patient's remarkable distancing from them (with some therapeutic implications supported by plausibly engaged mechanisms). This case not only authentically enriched the description of such rare combination of heterogenous illusory symptoms through this novel visualization-based reporting approach, but disclosed an unrevealed anatomo-clinical link relating all of them to the acute stroke lesion through an association fiber, thereby contributing to the understanding of these intriguing symptoms and their determinants.


Asunto(s)
Ilusiones , Trastornos de la Percepción , Accidente Cerebrovascular , Trastornos de la Visión , Humanos , Anciano de 80 o más Años , Alucinaciones , Trastornos de la Percepción/diagnóstico , Lóbulo Parietal/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
5.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352359

RESUMEN

Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have shown that brain characteristics can serve as robust predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over six- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~ 0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

6.
Brain ; 147(2): 352-371, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703295

RESUMEN

Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Adulto , Humanos , Función Ejecutiva/fisiología , Sustancia Blanca/patología , Neoplasias Encefálicas/patología , Imagen de Difusión Tensora , Vigilia
7.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38037857

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Sustancia Gris/patología , Sustancia Blanca/patología , Estimulación Magnética Transcraneal , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Entrenamiento Cognitivo , Imagen por Resonancia Magnética/métodos , Encéfalo
8.
Front Neuroanat ; 17: 1214629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942215

RESUMEN

The model of the four streams of the prefrontal cortex proposes 4 streams of information: motor through Brodmann area (BA) 8, emotion through BA 9, memory through BA 10, and emotional-related sensory through BA 11. Although there is a surge of functional data supporting these 4 streams within the PFC, the structural connectivity underlying these neural networks has not been fully clarified. Here we perform population-based high-definition tractography using an averaged template generated from data of 1,065 human healthy subjects acquired from the Human Connectome Project to further elucidate the structural organization of these regions. We report the structural connectivity of BA 8 with BA 6, BA 9 with the insula, BA 10 with the hippocampus, BA 11 with the temporal pole, and BA 11 with the amygdala. The 4 streams of the prefrontal cortex are subserved by a structural neural network encompassing fibers of the anterior part of the superior longitudinal fasciculus-I and II, corona radiata, cingulum, frontal aslant tract, and uncinate fasciculus. The identified neural network of the four streams of the PFC will allow the comprehensive analysis of these networks in normal and pathological brain function.

9.
Front Hum Neurosci ; 17: 1147352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868699

RESUMEN

Developmental dyscalculia is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood lowering the individual's quality of life. However, the neural correlates of developmental dyscalculia are poorly understood. This study aimed to identify brain structural connectivity alterations in developmental dyscalculia. All participants were recruited from a large scale, non-referred population sample in a longitudinal design. We studied 10 children with developmental dyscalculia (11.3 ± 0.7 years) and 16 typically developing peers (11.2 ± 0.6 years) using diffusion-weighted magnetic resonance imaging. We assessed white matter microstructure with tract-based spatial statistics in regions-of-interest tracts that had previously been related to math ability in children. Then we used global probabilistic tractography for the first time to measure and compare tract length between developmental dyscalculia and typically developing groups. The high angular resolution diffusion-weighted magnetic resonance imaging and crossing-fiber probabilistic tractography allowed us to evaluate the length of the pathways compared to previous studies. The major findings of our study were reduced white matter coherence and shorter tract length of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the developmental dyscalculia group. Furthermore, the lower white matter coherence and shorter pathways tended to be associated with the lower math performance. These results from the regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might be related to developmental dyscalculia in children.

10.
Front Neurol ; 14: 1136367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602240

RESUMEN

The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.

11.
Cortex ; 166: 243-257, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37406409

RESUMEN

INTRODUCTION: Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with many functional impairments thought to be underpinned by difficulties in executive function domains such as working memory. The superior longitudinal fasciculus (SLF) plays an integral role in the development of working memory in neurotypical children. Neuroimaging research suggests reduced white matter organization of the SLF may contribute to working memory difficulties commonly seen in ADHD. This study aimed to examine the relationship between white matter organization of the SLF and working memory in children with ADHD. METHODS: We examined the association of tract volume and apparent fibre density (AFD) of the SLF with working memory in children with ADHD (n = 64) and controls (n = 58) aged 9-11years. Children completed a computerized spatial n-back task and underwent diffusion magnetic resonance imaging (dMRI). Constrained spherical deconvolution-based tractography was used to construct the three branches of the SLF bilaterally and examine volume and AFD of the SLF. RESULTS: Regression analyses revealed children with ADHD exhibited poorer working memory, and lower volume and AFD of the left SLF-II compared to healthy controls. There was also an association between reaction time and variability (RT and RT-V) and the left SLF-II. Further analyses revealed volume of the left SLF-II mediated the relationship between ADHD and working memory performance (RT and RT-V). DISCUSSION: These findings add to the current body of ADHD literature, revealing the potential role of frontoparietal white matter in working memory difficulties in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Humanos , Niño , Sustancia Blanca/patología , Memoria a Corto Plazo , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cognición , Trastornos de la Memoria
12.
Front Neurol ; 14: 1157625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521287

RESUMEN

Introduction: Parieto-frontal interactions are mediated by the superior longitudinal fasciculus (SLF) and are crucial to integrate visuomotor information and mediate fine motor control. In this study, we aimed to characterize the relation of white matter integrity of both parts of the SLF (SLF I and SLF II) to both motor outcome and recovery and its evolution over time in stroke patients with upper limb motor deficits. Materials and methods: Fractional anisotropy (FA) values over the SLF I, SLF II, and corticospinal tract (CST) and upper limb motor performance evaluated by both the upper limb Fugl-Meyer Assessment score and maximum grip strength were measured for 16 patients at 3 weeks, 6 weeks, and 12 weeks poststroke. FA changes were assessed over time using repeated-measures Friedman ANOVA, and correlations between motor recovery, motor outcome at 12 weeks, and FA values in the CST, SLF I, and SLF II at 3 weeks were performed using Spearman's rank-order correlation. Results: FA values in the affected hemisphere's SLF I and SLF II at 3 weeks correlated with motor recovery at 12 weeks when assessed by the Fugl-Meyer Assessment for upper limb extremity (rho: 0.502, p: 0.04 and rho: 0.510, p: 0.04, respectively) but not when assessed by grip strength. FA values in the SLF I and SLF II were not correlated with motor outcomes. FA values in the SLF II in the affected hemisphere changed significantly over time (p: 0.016). Conclusion: Both SLF I and SLF II appeared to participate in poststroke motor recovery of complex movements but not in the motor outcome. These results argue that visually/spatially oriented motor tasks as well as more complex motor tasks using parietal associative areas should be used for poststroke rehabilitation strategies.

13.
Clin Neurol Neurosurg ; 230: 107756, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245457

RESUMEN

Meningiomas that arise in the atria of the lateral ventricles are relatively rare lesions, that pose a unique challenge for surgery due to their deep-seated location and proximity to critical white matter tracts. Size and anatomical variations can affect the best approach for these tumors, with several approaches described to access the atrium including the interhemispheric trans-precuneus, trans-supramarginal gyrus, distal trans-sylvian, supracerebellar trans-collateral sulcus, and finally the trans-intraparietal sulcus approach, which was the choice for this case. Minimally invasive techniques that preserve the surrounding tissue are becoming increasingly popular and are perfectly suited to deep seated lesions. The relevant subcortical anatomy surrounding the atrium is discussed. The optic radiations form the lateral wall of the atrium, whereas commissural fibers of the tapetum form the roof of the atrium, and superficial to these fibers we have the superior longitudinal fasciculus that have vertical rami that communicate with the superior parietal lobule. Utilizing the posterior half of the intraparietal sulcus can preserve these fibers. The use of neuronavigation, brain magnetic resonance imaging with diffusion tensor imaging (DTI) tractography may be helpful in the surgical planning. In this article, we present a surgical video of a trans-tubular interparietal sulcus approach for resection of an atrium meningioma. A 43-year-old right-handed female who presented with progressive headaches and a diagnosis of idiopathic intracranial hypertension was found to have an atrial meningioma that grew in follow-up and surgery was recommended. We chose the posterior intraparietal sulcus approach as it provides a good angle of attack while preserving the optic radiations and most of the superior longitudinal fasciculus, using a tubular retractor to minimize tissue damage. Gross total resection of the tumor was achieved with complete preservation of patient neurological function.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Sustancia Blanca , Humanos , Femenino , Adulto , Imagen de Difusión Tensora , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/cirugía , Imagen por Resonancia Magnética , Sustancia Blanca/cirugía , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía
14.
J Neurooncol ; 163(1): 95-104, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37093525

RESUMEN

PURPOSE: Language networks are reorganized during glioma growth, leading to varying language performance in patients with gliomas located in or around language-eloquent areas. Therefore, pre-treated language performance reflects the neuroplasticity potential. Different domains of language processing, such as speech expression, repetition, and comprehension, involving different neural networks. We analyzed the effects of patient factors and tumor characteristics on the pre-treated performance to investigate neuroplastic potential of different language domains. METHODS: Patient age, sex, education level, tumor grade, language pathway involvement, T1 contrast enhanced (C+), and FLAIR (T2) volume were selected as variables. The correlation with abnormal language performance was verified using univariate and multivariate logistic regression. RESULTS: In total, 104 left hemispheric glioma patients were enrolled in this study. 44% of patients had repetitive abnormalities, 34.9% had comprehensive abnormalities, and 32.1% had expressive abnormalities. The proportion of normal language performance was 60% in grade 2 and 3 gliomas and 16% in grade 4 gliomas. Tumor grade (p = 0.006) and T2 volume (p = 0.008) were associated with abnormal performance in the expressive domain, education level (p = 0.004) and T1 C+ volume (p = 0.049) in the repetitive domain, and education level (p = 0.013), T2 volume (p = 0.011), and tumor grade (p = 0.089) in the comprehensive domain. CONCLUSION: Different clinical and radiological factors affected the abnormal performance of the three language domains, indicating their functional connectivity and neuroplastic potential are inherently varied. The dynamic interactions between patient factors, tumor characteristics, and language processing should be considered when resecting left hemispheric gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patología , Glioma/patología , Lenguaje , Habla , Procedimientos Neuroquirúrgicos , Mapeo Encefálico
15.
Neuropsychologia ; 184: 108561, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031951

RESUMEN

Adaptive behavior requires the ability to orient attention to the moment in time at which a relevant event is likely to occur. Temporal orienting of attention has been consistently associated with activation of the left intraparietal sulcus (IPS) in prior fMRI studies. However, a direct test of its causal involvement in temporal orienting is still lacking. The present study tackled this issue by transiently perturbing left IPS activity with either online (Experiment 1) or offline (Experiment 2) transcranial magnetic stimulation (TMS). In both experiments, participants performed a temporal orienting task, alternating between blocks in which a temporal cue predicted when a subsequent target would appear and blocks in which a neutral cue provided no information about target timing. In Experiment 1 we used an online TMS protocol, aiming to interfere specifically with cue-related temporal processes, whereas in Experiment 2 we employed an offline protocol whereby participants performed the temporal orienting task before and after receiving TMS. The right IPS and/or the vertex were stimulated as active control regions. While results replicated the canonical pattern of temporal orienting effects on reaction time, with faster responses for temporal than neutral trials, these effects were not modulated by TMS over the left IPS (as compared to the right IPS and/or vertex regions) regardless of the online or offline protocol used. Overall, these findings challenge the causal role of the left IPS in temporal orienting of attention inviting further research on its underlying neural substrates.


Asunto(s)
Mapeo Encefálico , Estimulación Magnética Transcraneal , Humanos , Mapeo Encefálico/métodos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Tiempo de Reacción/fisiología , Imagen por Resonancia Magnética
16.
J Neurosurg ; 139(4): 1140-1151, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883635

RESUMEN

OBJECTIVE: The objective was to identify the correspondence between the anterior terminations of the arcuate fasciculus (AF) and third branch of the superior longitudinal fasciculus (SLF-III) and the intraoperative direct cortical electrical stimulation (DCS)-induced speech arrest area. METHODS: The authors retrospectively screened 75 glioma patients (group 1) who received intraoperative DCS mapping in the left dominant frontal cortex. To minimize the influence of tumors or edema, we subsequently selected 26 patients (group 2) with glioma or edema not affecting Broca's area, the ventral precentral gyrus (vPCG), and the subcortical pathways to generate DCS functional maps and to construct the anterior terminations of AF and SLF-III with tractography. Next, a grid-by-grid pairwise comparison was performed between the fiber terminations and the DCS-induced speech arrest sites to calculate Cohen's kappa coefficient (κ) in both groups 1 and 2. Finally, the authors also demonstrated the distribution of the AF/SLF-III anterior projection maps obtained in 192 healthy participants (group 3) and subsequently correlated these with the speech arrest sites in group 2 to examine their validity in predicting speech output area. RESULTS: The authors found that speech arrest sites were substantially consistent with SLF-III anterior terminations (group 1, κ = 0.64 ± 0.03; group 2, κ = 0.73 ± 0.05) and moderately consistent with AF (group 1, κ = 0.51 ± 0.03; group 2, κ = 0.49 ± 0.05) and AF/SLF-III complex (group 1, κ = 0.54 ± 0.03; group 2, κ = 0.56 ± 0.05) terminations (all p < 0.0001). The DCS speech arrest sites of the group 2 patients mainly (85.1%) emerged at the anterior bank of the vPCG (vPCGa). In group 3, both terminations of AF and SLF-III converged onto the vPCGa, and their terminations well predicted the DCS speech output area of group 2 (AF, area under the curve [AUC] 86.5%; SLF-III, AUC 79.0%; AF/SLF-III complex, AUC 86.7%). CONCLUSIONS: This study supports the key role of the left vPCGa as the speech output node by showing convergence between speech output mapping and anterior AF/SLF-III connectivity in the vPCGa. These findings may contribute to the understanding of speech networks and could have clinical implications in preoperative surgical planning.


Asunto(s)
Glioma , Corteza Motora , Sustancia Blanca , Humanos , Habla , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Sustancia Blanca/patología , Mapeo Encefálico , Vías Nerviosas/patología
17.
Cancers (Basel) ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36765764

RESUMEN

Executive dysfunctions have a high prevalence in low-grade glioma patients and may be the result of structural disconnections of particular subcortical tracts and/or networks. However, little research has focused on preoperative low-grade glioma patients. The frontotemporoparietal network has been closely linked to executive functions and is substantiated by the superior longitudinal fasciculus. The aim of this study was to investigate their role in executive functions in low-grade glioma patients. Patients from two neurological centers were included with IDH-mutated low-grade gliomas. The sets of preoperative predictors were (i) distance between the tumor and superior longitudinal fasciculus, (ii) structural integrity of the superior longitudinal fasciculus, (iii) overlap between tumor and cortical networks, and (iv) white matter disconnection of the same networks. Linear regression and random forest analyses were performed. The group of 156 patients demonstrated significantly lower performance than normative samples and had a higher prevalence of executive impairments. However, both regression and random forest analyses did not demonstrate significant results, meaning that neither structural, cortical network overlap, nor network disconnection predictors explained executive performance. Overall, our null results indicate that there is no straightforward topographical explanation of executive performance in low-grade glioma patients. We extensively discuss possible explanations, including plasticity-induced network-level equipotentiality. Finally, we stress the need for the development of novel methods to unveil the complex and interacting mechanisms that cause executive deficits in low-grade glioma patients.

18.
J Clin Med ; 12(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675612

RESUMEN

Chronic subclinical inflammation is believed to be an important factor in the pathogenesis of schizophrenia. Meta-analyses confirm the presence of increased levels of peripheral inflammatory markers (IM) in schizophrenia and its prodromal stages. Peripheral cytokines may affect the brain microstructure through chronic activation of microglia. Disruptions in the integrity of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF) are commonly seen in patients with schizophrenia spectrum disorders. We therefore attempted to verify in a cross-sectional study whether there is a correlation between levels of peripheral IM and the integrity of these brain regions in healthy controls, from prodromal states and first episode psychosis to long-term schizophrenia. The integrity of white matter was measured using diffusion tensor imaging. Despite a broad analysis of six IM (CRP, IL-6, IL-8, IL-10, TNF-α, and IFN-γ), we did not find any correlations with the integrity of the SLF or ILF in any of the analyzed groups (after correction for multiple comparisons). In conclusion, our study does not support the existence of a link between disrupted levels of peripheral IM and reduced integrity of ILF and SLF in schizophrenia spectrum disorders. However, prospective studies are needed to verify this over a long period of time.

19.
Hum Brain Mapp ; 44(4): 1603-1616, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515634

RESUMEN

The comprehension of spoken language is one of the most essential language functions in humans. However, the neurological underpinnings of auditory comprehension remain under debate. Here we used multi-modal neuroimaging analyses on a group of patients with low-grade gliomas to localize cortical regions and white matter tracts responsible for auditory language comprehension. Region-of-interests and voxel-level whole-brain analyses showed that cortical areas in the posterior temporal lobe are crucial for language comprehension. The fiber integrity assessed with diffusion tensor imaging of the arcuate fasciculus and the inferior longitudinal fasciculus was strongly correlated with both auditory comprehension and the grey matter volume of the inferior temporal and middle temporal gyri. Together, our findings provide direct evidence for an integrated network of auditory comprehension whereby the superior temporal gyrus and sulcus, the posterior parts of the middle and inferior temporal gyri serve as auditory comprehension cortex, and the arcuate fasciculus and the inferior longitudinal fasciculus subserve as crucial structural connectivity. These findings provide critical evidence on the neural underpinnings of language comprehension.


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Comprensión , Imagen de Difusión Tensora/métodos , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen
20.
Hum Brain Mapp ; 44(2): 304-314, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838008

RESUMEN

Methamphetamine use disorder (MUD) has been associated with broad neurocognitive impairments. While the cognitive impairments of MUD have been demonstrated, the neuropathological underpinnings remain inadequately understood. To date, the published human diffusion tensor imaging (DTI) studies involving the correlation between diffusion parameters and neurocognitive function in MUD are limited. Hence, the present study aimed to examine the association between cognitive performance and white matter microstructure in patients with MUD. Forty-five patients with MUD and 43 healthy controls (HCs) completed their demographic information collection, cognitive assessments, and DTI imaging. DTI images were preprocessed to extract fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of various fiber tracts. Univariate tests were used to examine group differences in cognitive assessments and DTI metrics. Linear regression was used to examine the relationship between these two metrics. The results revealed that patients with MUD had lower subset scores of the MATRICS Consensus Cognitive Battery (MCCB), which reflects five cognitive domains: processing speed, attention, verbal learning, visual learning, problem-solving. Patients with MUD also had significantly higher AD, MD, and RD values of the left superior longitudinal fasciculus than HCs. Furthermore, the RD value of the left superior longitudinal fasciculus was a significant predictor of processing speed and problem-solving ability, as shown by the digit-symbol coding test and NAB-Mazes scores, respectively. Findings extended our understanding of white matter microstructure that is related to neurocognitive deficits in MUD and provided potential targets for the prevention and treatment of this chronic disorder.


Asunto(s)
Metanfetamina , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora/métodos , Metanfetamina/efectos adversos , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA