Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290157

RESUMEN

The sugarcane aphid, Melanaphis sacchari (Zehntner, 1897), is an agricultural pest that causes damage to plants in the Poaceae (the grasses) family, such as sorghum and sugarcane. Here, we used Nanopore long reads and Hi-C interaction map to generate a chromosome-level assembly with a total length of 356.1 Mb, of which 85.5% (304.6 Mb) is contained within the three autosomes and the X chromosome. Repetitive sequences accounted for 16.29% of the chromosomes and a total of 12,530 protein-coding genes were annotated, achieving 95.8% benchmarking universal single-copy orthologs (BUSCO) gene completeness. This offers a substantial improvement compared to previous low-quality genomic resources. Phylogenomic analysis by comparing M. sacchari with twenty-four published aphid genomes representing three aphid tribes reveals that M. sacchari belongs to the tribe Aphidini and maintained a conserved chromosome structure with other Aphidini species. The high-quality genomic resources reported in this study will be useful for understanding the evolution of aphid genomes and studying pest management of M. sacchari.

2.
Front Plant Sci ; 15: 1324085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903420

RESUMEN

Sugarcane aphid has emerged as a major pest of sorghum recently, and a few sorghum accessions were identified for resistance to this aphid so far. However, the molecular and genetic mechanisms underlying this resistance are still unclear. To understand these mechanisms, transcriptomics was conducted in resistant Tx2783 and susceptible BTx623 sorghum genotypes infested with sugarcane aphids. A principal component analysis revealed differences in the transcriptomic profiles of the two genotypes. The pathway analysis of the differentially expressed genes (DEGs) indicated the upregulation of a set of genes related to signal perception (nucleotide-binding, leucine-rich repeat proteins), signal transduction [mitogen-activated protein kinases signaling, salicylic acid (SA), and jasmonic acid (JA)], and plant defense (transcription factors, flavonoids, and terpenoids). The upregulation of the selected DEGs was verified by real-time quantitative PCR data analysis, performed on the resistant and susceptible genotypes. A phytohormone bioassay experiment showed a decrease in aphid population, plant mortality, and damage in the susceptible genotype when treated with JA and SA. Together, the results indicate that the set of genes, pathways, and defense compounds is involved in host plant resistance to aphids. These findings shed light on the specific role of each DEG, thus advancing our understanding of the genetic and molecular mechanisms of host plant resistance to aphids.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658156

RESUMEN

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Asunto(s)
Acetatos , Alelos , Áfidos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Áfidos/genética , Oxilipinas/farmacología , Oxilipinas/metabolismo , Perfilación de la Expresión Génica , Animales , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
4.
BMC Genomics ; 24(1): 441, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543569

RESUMEN

BACKGROUND: The sugarcane aphid (SCA; Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. RESULTS: We used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. CONCLUSIONS: In summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Transcriptoma , Áfidos/fisiología , Sorghum/genética , Saccharum/genética , Reguladores del Crecimiento de las Plantas , Grano Comestible/genética , Mecanismos de Defensa , Oxidorreductasas/genética
5.
Planta ; 258(2): 35, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37389680

RESUMEN

MAIN CONCLUSION: Insect herbivores of different feeding guilds induced sorghum defenses through differential mechanisms, regardless of the order of herbivore arrival on sorghum plants. Sorghum, one of the world's most important cereal crops, suffers severe yield losses due to attack by insects of different feeding guilds. In most instances, the emergence of these pests are not secluded incidents and are followed by another or can also co-infest host plants. Sugarcane aphid (SCA) and fall armyworm (FAW) are the two most important destructive pests of sorghum, which belongs to sap-sucking and chewing feeding guilds, respectively. While the order of the herbivore arriving on the plants has been found to alter the defense response to subsequent herbivores, this is seldom studied with herbivores from different feeding guilds. In this study, we investigated the effects of sequential herbivory of FAW and SCA on sorghum defense responses and their underlying mechanism(s). Sequential feeding on the sorghum RTx430 genotype by either FAW primed-SCA or SCA primed-FAW were monitored to unravel the mechanisms underlying defense priming, and its mode of action. Regardless of the order of herbivore arrival on sorghum RTx430 plants, significant defense induction was observed in the primed state compared to the non-primed condition, irrespective of their feeding guild. Additionally, gene expression and secondary metabolite analysis revealed differential modulation of the phenylpropanoid pathway upon insect attack by different feeding guilds. Our findings suggest that priming in sorghum plants upon sequential herbivory induces defense by the accumulation of the total flavonoids and lignin/salicylic acid in FAW primed-SCA and SCA primed-FAW interaction, respectively.


Asunto(s)
Áfidos , Sorghum , Animales , Grano Comestible , Herbivoria , Sorghum/genética , Productos Agrícolas , Insectos
6.
Planta ; 257(1): 22, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36538118

RESUMEN

MAIN CONCLUSION: Quantification of cuticular waxes coupled with insect bioassays and feeding behavior analysis demonstrate that long-chain C32 fatty alcohol impacts host plant selection by aphids. Cuticular waxes constitute the first point of contact between plants and their environment, and it also protect plants from external stresses. However, the role of waxes in Sorghum bicolor (sorghum) against sugarcane aphid (Melanaphis sacchari), a relatively new and devastating pest of sorghum in the U.S., is not fully understood. In this study, we monitored sugarcane aphid behavior on two genotypes of young sorghum plants with different wax chemistry: a wild-type plant (bloom) with lower C32 alcohol cuticular wax, and a mutant plant (bloomless) with 1.6 times the amount of wax compared to wild-type plants. No-choice aphid bioassays revealed that sugarcane aphid reproduction did not vary between wild-type and the bloomless plants. Electrical Penetration Graph (EPG) monitoring indicated that the sugarcane aphids spent comparable amount of time feeding from the sieve elements of the wild-type and bloomless plants. However, aphids spent more time feeding on the xylem sap of the bloomless plants compared to the wild-type plants. Furthermore, aphid choice assays revealed that the sugarcane aphids preferred to settle on bloomless compared to wild-type plants. Overall, our results suggest that cuticular waxes on young sorghum leaves play a critical role in influencing host plant selection by sugarcane aphids.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Sorghum/genética , Ceras , Conducta Alimentaria , Grano Comestible
7.
J Econ Entomol ; 115(6): 1956-1963, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36321896

RESUMEN

To determine the factors leading to outbreaks of the sugarcane aphid, Melanaphis sacchari, (Zehntner) (Hemiptera: Aphididae) in sorghum in Haiti, a survey was carried out on farms during two cropping seasons, spring and fall of 2018. A total of 45 plots in three Haitian regions were monitored from the five-leaf stage to grain ripening. Infestation with M. sacchari was significantly higher in spring than in fall, except in one location. Melanaphis sacchari populations varied significantly according to phenological stages of sorghum, with significantly higher abundance during the heading and flowering stages than other stages. In and around sorghum fields, the sugarcane aphid was observed on plants from three families: Poaceae, Malvaceae, and Cucurbitaceae. Aphid natural enemies found in sorghum fields consisted of eight species of ladybeetles (Coleoptera: Coccinellidae), one hoverfly (Diptera: Syrphidae), one lacewing (Neuroptera: Chrysopidae), and one predatory midge (Diptera: Cecidomyiidae). In addition to these predators, two parasitoid species, Adialytus sp. (Hymenoptera: Braconidae) and Pachyneuron aphidis (Bouché) (Hymenoptera: Pteromalidae), emerged from sugarcane aphid mummies. Predator and parasitoid densities were highly affected by growing season, with most of the biological control happening in fall. This study provides insights on sugarcane aphid management in Haiti and the Caribbean Islands.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Haití , Especificidad del Huésped , Grano Comestible
8.
Insects ; 13(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35621752

RESUMEN

Melanaphis sorghi (Hemiptera: Aphididae), are an economically important pest to sorghum in the Americas. Previous studies have found that a super-clone that belongs to multilocus lineage (MLL)-F predominated in the U.S. from 2013 to 2018 and uses multiple hosts besides sorghum. In contrast, previous studies found that aphids in South America belong to MLL-C, but these studies only examined aphids collected from sugarcane. In this study we sought to determine if the superclone persisted in the U.S. in 2019-2020 and to determine the MLL of aphids found on sorghum in the largest country in South America, Brazil. Melanaphis spp. samples (121) were collected from the U.S. in 2019-2020 and Brazil in 2020 and were genotyped with 8-9 Melanaphis spp. microsatellite markers. Genotyping results showed that all samples from the U.S. in 2019 and Brazil in 2020 had alleles identical to the predominant superclone. Of the 52 samples collected in the U.S. in 2020, 50 samples were identical to the predominant super-clone (multilocus lineage-F; M. sorghi), while two samples from Texas differed from the super-clone by a single allele. The results demonstrated that the super-clone remains in the U.S. on sorghum, Johnsongrass, and giant miscanthus and is also present on sorghum within Brazil.

9.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281180

RESUMEN

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Asunto(s)
Áfidos/fisiología , Defensa de la Planta contra la Herbivoria/genética , Sorghum/genética , Animales , Susceptibilidad a Enfermedades , Grano Comestible/genética , Expresión Génica , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genotipo , Control Biológico de Vectores/métodos , Fitomejoramiento/métodos , Sorghum/parasitología , Transcriptoma
10.
J Econ Entomol ; 114(2): 757-768, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33595638

RESUMEN

The sugarcane aphid, Melanaphis sacchari (Zehntner), emerged as a severe pest of sorghum, Sorghum bicolor (L.), in Texas and Louisiana in 2013 and currently threatens nearly all sorghum production in the United States. Proper management of populations is critical as sugarcane aphid has a high reproductive potential and can rapidly damage plants, resulting in extensive yield losses. The overall objective of this work was to investigate sugarcane aphid population dynamics, and subsequent sorghum injury and grain yield on commercially available grain sorghum varieties in Alabama. This research includes three-site years of data that show variation in plant injury, physiological maturity, and yields among varieties tested. Although performance of each variety was variable among locations, potentially due to abiotic factors, four varieties including DKS 37-07, 1G588, 1G855, and 83P17 exhibited characteristics consistent with resistance and corroborates reports of resistance from other states.


Asunto(s)
Áfidos , Sorghum , Alabama , Animales , Dinámica Poblacional , Texas
11.
J Econ Entomol ; 114(2): 959-969, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33547788

RESUMEN

Since 2013 Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae), the sugarcane aphid, has been a threat to sorghum production in the United States. The development of resistant sorghum hybrids has been one of the main management strategies. However, plant resistance can be overcome over time and new resistance genes need to be identified and introduced into adapted sorghum hybrids to secure sorghum production. Sorghum plant introduction (PI) genotypes were screened for resistance to M. sacchari through laboratory, greenhouse, and field assays. In addition, the feeding parameters of M. saccahri were analyzed and detailed in seven sorghum genotypes through EPG assays. Results showed sorghum genotypes PI 524770, PI 564163, and PI 643515 expressed resistance to M. sacchari consistently in laboratory, greenhouse, and field tests. EPG analysis suggested sorghum genotypes PI 524770 and PI 564163 express antibiosis to M. sacchari while PI 643515 expresses both antibiosis and antixenosis. Increasing the number of sorghum hybrids resistant to M. sacchari is key to improving integrated pest management of M. sacchari. By utilizing host plant resistance, sorghum producers can decrease insecticide applications while enhancing biological control.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Áfidos/genética , Grano Comestible , Defensa de la Planta contra la Herbivoria , Sorghum/genética
12.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120946

RESUMEN

Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.


Asunto(s)
Áfidos/patogenicidad , Redes Reguladoras de Genes , Panicum/parasitología , Inmunidad de la Planta , Animales , Biomasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolómica , Panicum/clasificación , Panicum/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN
13.
Insect Biochem Mol Biol ; 123: 103405, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32534986

RESUMEN

Sequence analysis of the genomic DNA isolated from four biotypes of the soybean aphid, Aphis glycines (AG), revealed that in addition to the commonly observed retrovirus-related retrotransposons, viral sequences derived from multiple RNA and DNA viruses have integrated into the genome. Notably, sequences of more than 60 nudiviral genes were identified from de novo assembled DNA contigs, and mapped to assembled genomic scaffolds of AG, indicating that an ancient nudivirus, named Aphis glycines endogenous nudivirus (AgENV), had integrated into the AG genome. Furthermore, sequences derived from a similar endogenous nudivirus, Melanaphis sacchari endogenous nudivirus (MsENV), were identified from the genomic scaffolds of the sugarcane aphid, Melanaphis sacchari. Analysis of transcriptome and small RNA sequence data derived from AG did not provide evidence for transcription of the integrated AgENV genes. Hence, the genes of AgENV may be present as pseudogenes. Phylogenetic analysis based on nudivirus core genes indicated that these aphid ENVs belong to the genus Alphanudivirus.


Asunto(s)
Áfidos/genética , Elementos Transponibles de ADN/genética , Nudiviridae/genética , Animales , Genes Virales , Genoma de los Insectos , Filogenia , Seudogenes , Glycine max
14.
Environ Entomol ; 49(3): 683-691, 2020 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-32333015

RESUMEN

Worldwide, Melanaphis sacchari Zehntner is reported on several plants in the family Poaceae, including important crops. In the United States, M. sacchari has been present primarily on sugarcane (Saccharum officinarum L.), but recently sorghum (Sorghum bicolor (L.) Moench) has become a main host. It is not clear how M. sacchari exploits sorghum or other plant species present in the Louisiana agro-ecoscape, but there is potential for these plants to be bridging hosts. Thus, this study determined the feeding behavior of M. sacchari on sorghum, rice, Oryza sativa (L.), sweetpotato, Ipomea batatas (L.), maize, Zea mays (L.), Johnsongrass, S. halepense (L.), and wheat Triticum aestivum (L.) using electrical penetration graphs. Melanaphis sacchari established sustained feeding on sorghum, Johnsongrass, wheat, and rice, only a negligent percentage on maize and no aphid fed on sweetpotato. Differences in Electrical Penetration Graph parameters among the plants in nonpenetrating total time and the lower number of probes, time to penetration initiation, proportion of individuals probing, number of probes shorter than 30 s, number of probes longer than 30 s but shorter than 3 min, pathway phase duration, and number of cell punctures during pathway phase, suggest epidermis and mesophyll factors affecting aphid feeding behavior. While the lack of differences in number of feeding occurrences, total time feeding, and number of sustained feeding occurrences shows that M. sacchari is able to feed on those plants, sieve element factors such as resistance or low nutritional quality prevent the growth of this population in field.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Conducta Alimentaria , Louisiana
15.
J Econ Entomol ; 112(6): 2719-2730, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31504648

RESUMEN

The invasive sugarcane aphid, Melanaphis sacchari (Zehntner), is a devastating new pest of grain sorghum. Studies were conducted utilizing an integrated approach of four management tactics: planting date, insecticidal seed treatment, a foliar-applied insecticide, and plant resistance. Experiments were conducted in 2016 and 2017 at Griffin, Tifton, and Plains Georgia, and in 2016 in Texas, Alabama, and Oklahoma, United States. Early planting was effective in reducing damage and increasing yields when compared to the late planting. Use of a resistant variety reduced cumulative aphid-days, plant injury and usually prevented significant yield loss. Foliar application of flupyradifurone when aphids reached an economic threshold, was an effective management tactic preventing aphid injury and yield loss. Use of clothianidin seed treatment also reduced aphid injury and yield loss of the susceptible hybrid but generally did not prevent injury and yield loss of the resistant hybrid. We conclude that an earlier planting date coupled with a resistant variety and judicious use of an efficacious foliar-applied insecticide can effectively manage sugarcane aphid on grain sorghum. An insecticide seed treatment also may be useful to reduce the risk of sugarcane aphid damage to seedlings of susceptible hybrids.


Asunto(s)
Áfidos , Control de Insectos , Sorghum , Alabama , Animales , Georgia , Oklahoma , Texas
16.
Environ Entomol ; 48(4): 929-934, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31175363

RESUMEN

Although Melanaphis sacchari Zehntner (Hemiptera: Aphididae) is known worldwide for its injury to sugarcane, Saccharum officinarum L., and sorghum, Sorghum bicolor (L.) Moench, M. sacchari is reported to infest several plants in the family Poaceae, including important agronomic crops. It is not clear how M. sacchari interacts with other crops in the Louisiana agroecoscape but there is potential for these plants to be bridging hosts prior to sorghum colonization. Thus, this study determined the population dynamics of M. sacchari on sugarcane, sorghum, rice (Oryza sativa L.), sweetpotato (Ipomea batatas L.), maize (Zea mays L.), Johnsongrass (S. halepense L.), and wheat (Triticum aestivum L.) using life table studies. Melanaphis sacchari was able to complete its life cycle on sorghum, sugarcane, rice, and wheat, having the highest intrinsic rate of increase (rm) on sorghum (0.466). Population growth was negative on rice (rm = -0.020) and intermediately positive on sugarcane and Johnsongrass. The results demonstrate that there is the potential for multiple host use within the agricultural landscape. Using the information collected from this study, population estimations on host plants demonstrate that M. sacchari populations will increase more rapidly on sorghum than on the other host plants.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Louisiana , Triticum
17.
Front Plant Sci ; 10: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853964

RESUMEN

The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent.

18.
J Econ Entomol ; 112(4): 1887-1901, 2019 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30915439

RESUMEN

Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts.


Asunto(s)
Áfidos , Panicum , Sorghum , Animales , Grano Comestible , Transcriptoma
19.
Annu Rev Entomol ; 64: 73-93, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30372159

RESUMEN

Aphid invasions of North American cereal crops generally have started with colonization of a new region or crop, followed by range expansion and outbreaks that vary in frequency and scale owing to geographically variable influences. To improve understanding of this process and management, we compare the invasion ecology of and management response to three cereal aphids: sugarcane aphid, Russian wheat aphid, and greenbug. The region exploited is determined primarily by climate and host plant availability. Once an area is permanently or annually colonized, outbreak intensity is also affected by natural enemies and managed inputs, such as aphid-resistant cultivars and insecticides. Over time, increases in natural enemy abundance and diversity, improved compatibility among management tactics, and limited threshold-based insecticide use have likely increased resilience of aphid regulation. Application of pest management foundational practices followed by a focus on compatible strategies are relevant worldwide. Area-wide pest management is most appropriate to large-scale cereal production systems, as exemplified in the Great Plains of North America.


Asunto(s)
Áfidos , Grano Comestible , Especies Introducidas , Control Biológico de Vectores , Animales
20.
Virusdisease ; 26(4): 237-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26645033

RESUMEN

Yellow leaf caused by Sugarcane yellow leaf virus (SCYLV) is a serious constraint to sugarcane production in India and currently the disease epidemics occur on many of the susceptible varieties under field conditions. Studies were conducted on the virus transmission by sugarcane aphid Melanaphis sacchari in sugarcane by inoculating virus-free meristem derived from micro- propagated plants of sugarcane cv Co 86032 with viruliferous aphids. Virus transmission was confirmed through RT-PCR assays and subsequently SCYLV population was established through RT-qPCR. A maximum of 22.3 × 10(3), 3.16 × 10(6) and 4.78 × 10(6) copies of SCYLV-RNA targets were recorded in the plants after 7, 180 and 300 days, respectively. This study showed that the aphid species M. sacchari acts as an effective vector of SCYLV. The relative standard curve method in RT-qPCR efficiently detected the increment in SCYLV copy numbers in sugarcane following transmission through M. sacchari.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA