Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1492-1500, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235006

RESUMEN

Improving the availability of soil phosphorus (P) and promoting tree growth through tree species selection and assembly are the critical issue. We conducted an afforestation experiment following randomized block experimental design with 1, 2, 4, and 6 tree species richness in south subtropics, including Pinus massoniana, Mytilaria laosensis, Erythrophleum fordii, Castanopsis hystrix, Michelia macclurei, Manglietia glauca, Aquilaria sinensis, and Dalbergia odorifera. We measured the bioavailable P components (CaCl2-P, citrate-P, enzyme-P and HCl-P) and examined the effects of different tree species assembly on bioavailable P components and tree growth. The results showed that, compared with non-nitrogen-fixing tree species, the mixing of nitrogen-fixing tree species (E. fordii and D. odorifera) effectively increased the contents of soil water, total nitrogen, total phosphorus, and microbial biomass P (MBP). The assembly of specific tree species improved the accumulation of bioavailable P. Mixing of nitrogen-fixing tree species significantly increased CaCl2-P content by 46.2% to 160.3%, the enzyme-P content produced by microbial mineralization by 69.3% to 688.2%, and HCl-P by 31.5% to 81.3%, increased MBP by 81.8% to 149.4%, and microbial biomass N (MBN) by 88.1% to 160.6%, respectively. Redundancy and correlation analysis results showed that MBP, available P, total phosphorus, L-leucine aminopeptidase, cellobiose, acid phosphatase, MBN and soil organic carbon were key factors driving the variation of rhizosphere soil bioavailable P. Mixing of nitrogen-fixing tree species increased enzyme-P and citrate-P, and the availability of which were positively correlated to tree basal area. In this study, mixing of nitrogen-fixing tree species increased the rhizosphere soil bioavailable P content, which facilitates tree growth.


Asunto(s)
Fósforo , Rizosfera , Suelo , Árboles , Fósforo/metabolismo , Fósforo/análisis , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Suelo/química , China , Clima Tropical , Nitrógeno/metabolismo , Nitrógeno/análisis , Pinus/crecimiento & desarrollo , Pinus/metabolismo
2.
Sci Total Environ ; 952: 175975, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222804

RESUMEN

Vegetation restoration of degraded land affects litter quality by changing the composition of tree species, providing direct effects on regulating the dynamic of soil organic C (SOC) through the priming effect (PE). However, it is unclear how the combined effects caused by vegetation restoration and input of different quality litters on PE-related C loss and gain. Here, we collected soils from an unrestored site and a site restored for 20 years, adding 13C-labeled low-quality (with high C/nitrogen [N] and lignin/N) and high-quality (with low C/N and lignin/N) litters to the soil, respectively. Our results revealed that adding high- and low-quality litter in two sites produced positive PEs after 150-day laboratory-based incubation. The PE induced by high-quality litter was lower than that of low-quality in two sites, which can be interpreted as low-quality litter has higher C/N that aggravates the nutrient imbalance of microorganisms and enhances their demand for N, prompting microorganisms to accelerate the mineralization of SOC through the "N mining". High-quality litter inputs can boost microbial C use efficiency and alleviate soil C loss due to PE in unrestored and restored pine forests. Moreover, high-quality litter input has a greater positive effect on SOC gain in unrestored lands than in restored lands, suggesting that litter with higher nutrient availability or fertilization is especially needed for the restoration of degraded soil fertility and C formation. Taken together, this study highlights the importance of tree species producing high-quality litter in mediating SOC decomposition and formation during degraded lands restoration, which is beneficial for the restoration of degraded lands and the enhancement of soil C sequestration.


Asunto(s)
Carbono , Pinus , Suelo , Suelo/química , Carbono/análisis , Bosques , Nitrógeno/análisis , Restauración y Remediación Ambiental/métodos
3.
PhytoKeys ; 245: 1-106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113755

RESUMEN

The genus Lycianthes (Dunal) Hassl. (Solanaceae) has in the past been treated as a section of the large genus Solanum L. but is more closely related to Capsicum L. Outside of the Americas, where the highest species diversity occurs, the genus is found in tropical and subtropical habitats from India to Japan and the Philippines, including the islands of Indonesia, New Guinea and the Solomons. The 19 species from Australia, New Guinea and the Pacific were treated in 'PhytoKeys 209'. Here I treat the remaining 10 species occurring across Asia; including two native species, L.biflora (Lour.) Bitter and L.oliveriana (Lauterb. & K.Schum) Bitter, and one cultivated species, L.rantonnetii (Carrière) Bitter that were also included in the earlier work. The Asian species treated here occupy a wide range of forested and disturbed habitats and are diverse in habit, ranging from epiphytic vines to small or medium sized trees, shrubs or creeping herbs. Many of the species are weedy plants of highly disturbed habitats and are best characterised as "ochlospecies", with complex polymorphic variation. Lycianthesrantonnetii, a species native to southern South America, is recorded as cultivated in India and Pakistan, but may be more widespread than collections indicate. The history of taxonomic treatments of Lycianthes in Asia is discussed, along with details of morphology found in all species. All species are treated in full, with complete morphological descriptions, including synonymy, lecto- or neotypifications, discussions of ecology and vernacular names, distribution maps and preliminary conservation assessments (for all except the cultivated L.rantonnetii). Searchable lists of all specimens examined are presented as Suppl. materials 1, 2.

4.
Int J Biometeorol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819443

RESUMEN

Febrile seizures are convulsions predominately occurring in young children. The effects of various exposomes, including influenza infection and external environmental factors, on febrile seizures have not been well-studied. In this study, we elucidated the relationships between ambient temperature, air pollutants, influenza infection, and febrile seizures using 22-year territory-wide hospitalization data in Hong Kong. The aggregated data were matched with the meteorological records and air pollutant concentrations. All-type and type-specific influenza-like illness positive (ILI+) rates were used as proxies for influenza activity. Distributed lag non-linear model in conjunction with the quasi-poisson generalized additive model was used to examine the associations of interest. According to the results, all-type influenza infections were significantly associated with an increased risk of hospital admissions for febrile seizures (cumulative adjusted relative risk [ARR] = 1.59 at 95th percentile vs. 0; 95% CI, 1.51-1.68). The effect of ILI + A/H3N2 on febrile seizure was more pronounced than other type-specific ILI + rates. A low mean ambient temperature was identified as a significant risk factor for febrile seizures (cumulative ARR = 1.50 at 5th percentile vs. median; 95% CI, 1.35-1.66), while the redox-weighted oxidant capacity and sulfur dioxide were not associated with febrile seizures. In conclusion, our study underscores that influenza infections and exposure to cold conditions were related to an increased risk of febrile seizures in children. Thus, we advocate for influenza vaccination before the onset of the cold season for children to mitigate the burden of febrile seizures.

5.
Sci Total Environ ; 934: 173158, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735329

RESUMEN

Soil respiration (Rs) is a major component of the global carbon (C) cycle and is influenced by the availability of nutrients such as phosphorus (P). However, the response of Rs to P addition in P-limited subtropical forest ecosystems and the underlying mechanisms remain poorly understood. To address this, we conducted a P addition experiment (50 kg P ha-1 yr-1) in a subtropical Chinese fir (Cunninghamia lanceolata) plantation forest. We separated Rs into heterotrophic respiration (Rh), root respiration (Rr), and mycorrhizal hyphal respiration (Rm), and quantified soil properties, microbial biomass (phospholipid fatty acid, PLFA), fungal community composition (ITS), and the activity of extracellular enzymes. Phosphorus addition significantly increased Rs and Rh, but decreased Rr and did not influence Rm. Further, P addition increased fungal, bacterial, and total PLFAs, and phenol oxidase activity. Conversely, P application decreased root biomass and did not alter the relative abundance of symbiotrophic fungi. Phosphorus enrichment therefore enhances soil C emissions by promoting organic matter decomposition by heterotrophic activity, rather than via increases in root or mycorrhizal respiration. This advances our mechanistic understanding of the relationship between fertility and soil respiration in subtropical forests, with implications for predicting soil C emissions under global change.


Asunto(s)
Bosques , Fósforo , Raíces de Plantas , Microbiología del Suelo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Procesos Heterotróficos , Micorrizas/fisiología , Cunninghamia , China , Biomasa , Ciclo del Carbono , Fertilizantes
6.
Am J Bot ; : e16319, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641926

RESUMEN

PREMISE: Endophytic and mycorrhizal fungi are crucial in facilitating plant nutrition acquisition and stress tolerance. In epiphytic habitats, plants face nutrition and water stress, but their roots are mostly nonmycorrhizal and especially lacking in arbuscular mycorrhizal associations. Ophioderma pendulum is an epiphytic fern with a partially mycoheterotrophic lifestyle, likely heavily reliant on symbiotic fungi. To characterize fungal associations in the sporophyte of O. pendulum, we focused on leaves and roots of O. pendulum, seeking to reveal the fungal communities in these organs. METHODS: Roots and leaves from O. pendulum in a subtropical forest were examined microscopically to observe the morphology of fungal structures and determine the percentage of various fungal structures in host tissues. Fungal composition was profiled using metabarcoding techniques that targeted ITS2 of the nuclear ribosomal DNA. RESULTS: Roots were consistently colonized by arbuscular mycorrhizal fungi (Glomeromycota), especially Acaulospora. Unlike previous findings on epiphytic ferns, dark septate endophytes were rare in O. pendulum roots. Leaves were predominantly colonized by Ascomycota fungi, specifically the classes Dothideomycetes (46.88%), Eurotiomycetes (11.51%), Sordariomycetes (6.23%), and Leotiomycetes (6.14%). Across sampling sites, fungal community compositions were similar in the roots but differed significantly in the leaves. CONCLUSIONS: Ophioderma pendulum maintains stable, single-taxon-dominant communities in the roots, primarily featuring arbuscular mycorrhizal fungi, whereas the leaves may harbor opportunistic fungal colonizers. Our study underlines the significance of mycorrhizal fungi in the adaptation of epiphytic ferns.

7.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511456

RESUMEN

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Asunto(s)
Cunninghamia , Ecosistema , Carbohidratos , Fotosíntesis , Estaciones del Año , Suelo/química , Azúcares , Árboles/fisiología
8.
Sci Total Environ ; 918: 170646, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325481

RESUMEN

Major floods pose a severe threat to coastal receiving environments, negatively impacting environmental health and ecosystem services through direct smothering with sediment and nutrient loading. This study examined the short and long-term impacts of the February 2022 major flood event on mud extent and sediment nitrogen flux in Moreton Bay (the Bay), a large, sub-tropical embayment in Southeast Queensland, Australia. Short-term impacts were assessed three days after the flood peak by sampling surface water at 47 sites in the direction of the predominant circulation pattern. Longer-term impacts were assessed by undertaking an intensive sediment survey of 223 sites and a nutrient flux experiment using sediment core incubations to simulate calm and resuspension conditions for the four key sediment classes. Short-term impacts revealed elevated turbidity levels extended across the Bay but were highest at the Brisbane River mouth, ammonium concentrations varied inversely with surface turbidity, whereas nitrate concentrates closely tracked surface turbidity. The sediment survey confirmed fine sediment deposition across 98 % of the Bay. Porewater within the upper 10 cm contained a standing pool of 280 t of ammonium, with concentrations more than three orders of magnitude higher than overlying surface waters. The nutrient flux experiment revealed an order of magnitude higher sediment ammonium flux rate in the sandy mud sediment class compared to the other sediment classes; and for simulated resuspension conditions compared to calm conditions for sand, muddy sand, and mud sediment classes. Scaling across the whole Bay, we estimated a mean annual sediment flux of 17,700 t/year ammonium, with a range of 13,500 to 21,900 t/year. Delivery of fine sediments by major floods over the last 50 years now impact >98 % of the benthic zone and provide a major loading pathway of available nitrogen to surface waters of Moreton Bay; representing a significant threat to ecosystem health.

9.
Ecology ; 105(4): e4259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38404022

RESUMEN

Rates at which a community recovers after disturbance, or its resilience, can be accelerated by increased net primary productivity and recolonization dynamics such as recruitment. These mechanisms can vary across biogeographic gradients, such as latitude, suggesting that biogeography is likely important to predicting resilience. To test whether community resilience, informed by functional and compositional recovery, hinges on geographic location, we employed a standardized replicated experiment on marine invertebrate communities across four regions from the tropics to the subarctic zone. Communities assembled naturally on standardized substrate while experiencing distinct levels of biomass removal (no removal, low disturbance, and high disturbance), which opened space for new colonizers, thereby providing a pulse of limited resource to these communities. We then quantified functional (space occupancy and biomass) and compositional recovery from these repeated pulse disturbances across two community assembly timescales (early and late at 3 and 12 months, respectively). We documented latitudinal variation in resilience across 47° latitude, where speed of functional recovery was higher toward lower latitudes yet incomplete at late assembly in the tropics and subtropics. The degree of functional recovery did not coincide with compositional recovery, and regional differences in recruitment and growth likely contributed to functional recovery in these communities. While biogeographic variation in community resilience has been predicted, our results are among the first to examine functional and compositional recovery from disturbance in a single large-scale standardized experiment.


Asunto(s)
Ecosistema , Invertebrados , Animales , Biomasa
10.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37847610

RESUMEN

Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).


Asunto(s)
Ecosistema , Plantas , Fotosíntesis , Respiración , Transporte de Electrón , Hojas de la Planta , Árboles
11.
Plant Divers ; 45(5): 552-568, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37936812

RESUMEN

East Asian evergreen broadleaved forests (EBFLs) harbor high species richness, but these ecosystems are severely impacted by global climate change and deforestation. Conserving and managing EBLFs requires understanding dominant tree distribution dynamics. In this study, we used 29 species in Quercus section Cyclobalanopsis-a keystone lineage in East Asian EBLFs-as proxies to predict EBLF distribution dynamics using species distribution models (SDMs). We examined climatic niche overlap, similarity, and equivalency among seven biogeographical regions' species using 'ecospat'. We also estimated the effectiveness of protected areas in the predicted range to elucidate priority conservation regions. Our results showed that the climatic niches of most geographical groups differ. The western species under the Indian summer monsoon regime were mainly impacted by temperature factors, whereas precipitation impacted the eastern species under the East Asian summer monsoon regime. Our simulation predicted a northward range expansion of section Cyclobalanopsis between 2081 and 2100, except for the ranges of the three Himalayan species analyzed, which might shrink significantly. The greatest shift of highly suitable areas was predicted for the species in the South Pacific, with a centroid shift of over 300 km. Remarkably, only 7.56% of suitable habitat is currently inside protected areas, and the percentage is predicted to continue declining in the future. To better conserve Asian EBLFs, establishing nature reserves in their northern distribution ranges, and transplanting the populations with predicted decreasing numbers and degraded habitats to their future highly suitable areas, should be high-priority objectives.

12.
Proc Biol Sci ; 290(2008): 20231185, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817591

RESUMEN

Concerns about widespread human-induced declines in insect populations are mounting, yet little is known about how land-use change modifies both the trends and variability of insect communities, particularly in understudied regions. Here, we examine how the seasonal activity patterns of ants-key drivers of terrestrial ecosystem functioning-vary with anthropogenic land-cover change on a subtropical island landscape, and whether differences in temperature or species composition can explain observed patterns. Using trap captures sampled biweekly over 2 years from a biodiversity monitoring network covering Okinawa Island, Japan, we processed 1.2 million individuals and reconstructed activity patterns within and across habitat types. Forest communities exhibited greater temporal variability of activity than those in more developed areas. Using time-series decomposition to deconstruct this pattern, we found that sites with greater human development exhibited ant communities with diminished seasonality, reduced synchrony and higher stochasticity compared with sites with greater forest cover. Our results cannot be explained by variation in regional or site temperature patterns, or by differences in species richness or composition among sites. Our study raises the possibility that disruptions to natural seasonal patterns of functionally key insect communities may comprise an important and underappreciated consequence of global environmental change that must be better understood across Earth's biomes.


Asunto(s)
Hormigas , Ecosistema , Animales , Humanos , Estaciones del Año , Biodiversidad , Bosques
13.
R Soc Open Sci ; 10(4): 221570, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063983

RESUMEN

This paper aims to reveal the effects of multi-generational succession of eucalyptus on soil fertility, organic structure and biological properties. Soil samples were collected from eucalyptus plantations of different stand ages (5, 11, 17 and 21 years old) in a typical area in south Asia, soil organic fraction structure and content characteristics were investigated using Fourier transform infrared (FTIR), and structural equation modelling (SEM) was used to explore influences of soil fertility, enzyme activity and organic fraction on stand biomass. FTIR analysis showed that 11 infrared absorption peaks existed in the soils of this study area, attributed to silicates, aromatics, carbonate ions, sugars, esters, polysaccharides, aliphatic hydrocarbons and phenolic alcohols. Combined with the results of peak area integration, the content of esters, aromatics and phenolic alcohols was significantly higher in 17- and 21-year-old stand soils than in control soils. The results of SEM showed that organic components were negatively related (p < 0.01) to enzyme activity and biomass, with standardized coefficients of 0.53 and 0.49, respectively. In summary, multi-generation succession of eucalyptus trees can change the structure of soil organic functional group composition and promote the enrichment of aromatic and phenolic alcohol functional groups. Such changes can directly inhibit the increase in eucalyptus biomass and indirectly negatively affect biomass by inhibiting enzyme activity.

14.
Environ Sci Technol ; 57(9): 3680-3690, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802450

RESUMEN

Sediment cores obtained from 11 tropical and subtropical American lakes revealed that local human activities significantly increased mercury (Hg) inputs and pollution levels. Remote lakes also have been contaminated by anthropogenic Hg through atmospheric depositions. Long-term sediment-core profiles revealed an approximately 3-fold increase in Hg fluxes to sediments from c. 1850 to 2000. Generalized additive models indicate that c. 3-fold increases in Hg fluxes also occurred since 2000 in the remote sites, while Hg emissions from anthropogenic sources have remained relatively stable. The tropical and subtropical Americas are vulnerable to extreme weather events. Air temperatures in this region have shown a marked increase since the 1990s, and extreme weather events arising from climate change have increased. When comparing Hg fluxes to recent (1950-2016) climatic changes, results show marked increases in Hg fluxes to sediments during dry periods. The Standardized Precipitation-Evapotranspiration Index (SPEI) time series indicate a tendency toward more extreme drier conditions across the study region since the mid-1990s, suggesting that instabilities in catchment surfaces caused by climate change are responsible for the elevated Hg flux rates. Drier conditions since c. 2000 appear to be promoting Hg fluxes from catchments to lakes, a process that will likely be exacerbated under future climate-change scenarios.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Lagos , Mercurio/análisis , Cambio Climático , Monitoreo del Ambiente , Contaminación Ambiental , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 870: 161934, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36736396

RESUMEN

Microorganisms facilitate the recovery of previously degraded soils, such as degraded lands experiencing vegetation restoration and understory expansion, through vital soil functions like nutrient cycling and decomposing organic matter. Despite the role of microorganisms in recovery, little is known about the effects of the process on microbial diversity and function. Here, we performed an understory fern, Dicranopteris dichotoma (Thunb.) Berhn removal treatments nested within three Masson pine (Pinus massoniana L.) plantations with different restoration years in subtropical China. Three ferns treatments including no ferns cover, with ferns cover, and the ferns removal treatments were established to assess the impact of the ferns on soil microbial diversity and function during revegetation and drivers of observed changes. We combined high-throughput sequencing, network structure modeling, and function prediction of soil bacterial and fungal communities to determine microbial diversity and functions. Our results showed that soil bacterial and fungal diversity increased with restoration time. Understory ferns significantly increased soil microbial diversity in the un-restored land but the effect became smaller in two restored sites. Understory ferns significantly increased the relative abundance of bacterial phyla Proteobacteria and Acidobacteria, but decreased that of Chloroflexi and Firmicutes. Furthermore, the presence of ferns increased the abundance of Basidiomycota, but increased the abundance of Ascomycota. Co-occurrence network analysis revealed that the presence of ferns leads to more complex of bacterial networks with more connections, nodes, average degrees, betweenness, and degrees. The functional predictions indicate that aerobic chemoheterotrophy, chemoheterotrophy, and nitrogen fixation functional groups play key roles in the nutrient cycling of soils with ferns cover. The bacterial and fungal community compositions were strongly affected by revegetation and understory ferns as litter biomass and soil nitrogen were identified as the key environmental factors. Our study highlights the role of understory in facilitating microbial diversity and function recovery during degraded lands restoration.


Asunto(s)
Helechos , Suelo , Suelo/química , Microbiología del Suelo , Biomasa , Nitrógeno/metabolismo , Bacterias/metabolismo
16.
Plant Biol (Stuttg) ; 25(3): 448-456, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719105

RESUMEN

Incorporating native shrubs into restoration projects can improve biodiversity conservation and enhance the sustainability of ecosystem functions. Shrubs grow under different forest canopy structures, having varied microclimatic conditions according to forest type and composition. Currently, there is a lack of information on propagation from seed and planting material availability for the utilization of shrubs in forest restoration. In the present study, we evaluated the effects of temperature and light on germination of ten shrub species (Ardisia japonica, Callicarpa cathayana, Callicarpa giraldii var. subcanescens, Deutzia schneideriana, Fraxinus sieboldiana, Hydrangea chinensis, Maesa japonica, Rhododendron simsii, Spiraea japonica var. fortunei and Weigela japonica var. sinica) occurring in subtropical forests in China. No seeds of any species germinated in the coolest thermal regime (5/10 °C), while optimal temperature requirements varied from 10/20 °C to 25/35 °C. Seeds of small-seeded species had higher germination percentages in the light treatments, while larger seeds were not photoblastic. There was no relationship between germination in the light and the seed shape index. Our results may assist in identification of seed traits and suitable shrub species for restoration in specific forest types, thus aiding native forest recovery of structure and composition. Successful recovery leads to enhanced biodiversity, reestablishment of microhabitats and ecological interactions in the forest understorey.


Asunto(s)
Bosques , Germinación , Biodiversidad , China
17.
Tree Physiol ; 43(1): 31-46, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36049081

RESUMEN

There is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C) × N addition (ambient, +40 kg N ha-1 yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100 µmol (V100,20 °C-NO3-) in spring. (ii) The analysis of covariance showed that Vmax,20 °C-NH4+ was positively correlated with root mycorrhizal colonization rate (MCR) and V100,20 °C-NO3- was positively correlated with specific root respiration rate (SRR), whereas no N uptake kinetic parameter was correlated with specific root length, root N and non-structural carbon concentrations. Thus, our results demonstrate that warming-increased root NH4+ uptake might be related to warming-increased MCR, whereas warming-increased root NO3- uptake might be related to warming-increased SRR. We conclude that root NH4+ and NO3- uptake capacity of subtropical Chinese fir can be elevated under warming and N deposition, which could improve plantation productivity and mitigate N leaching loss and soil acidification.


Asunto(s)
Cunninghamia , Micorrizas , Nitrógeno/análisis , Bosques , Suelo/química
18.
Sci Total Environ ; 862: 160585, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502990

RESUMEN

eDNA metabarcoding is an emergent tool to inform aerobiome complexity, but few studies have applied this technology with real-world environmental pollen monitoring samples. Here we apply eDNA metabarcoding to assess seasonal and regional differences in the composition of airborne pollen from routine samples collected across successive years. Airborne pollen concentrations over two sampling periods were determined using a continuous flow volumetric impaction air sampler in sub-tropical (Mutdapilly and Rocklea) and temperate (Macquarie Park and Richmond), sites of Australia. eDNA metabarcoding was applied to daily pollen samples collected once per week using the rbcL amplicon. Composition and redundancy analysis of the sequence read counts were examined. The dominant pollen families were mostly consistent between consecutive years but there was some heterogeneity between sites and years for month of peak pollen release. Many more families were detected by eDNA than counted by light microscopy with 211 to 399 operational taxonomic units assigned to family per site from October to May. There were 216 unique and 119 taxa shared between subtropics (27°S) and temperate (33°S) latitudes, with, for example, Poaceae, Myrtaceae and Causurinaceae being shared, and Manihot, Vigna and Aristida being in subtropical, and Ceratodon and Cerastium being in temperate sites. Certain genera were observed within the same location and season over the two years; Chloris at Rocklea in autumn of 2017-18 (0.625, p ≤ 0.004) and 2018-19 (0.55, p ≤ 0.001), and Pinus and Plantago at Macquarie Park in summer of 2017-18 (0.58, p ≤ 0.001 and 0.53, p ≤ 0.003, respectively), and 2018-19 (0.8, p ≤ 0.003 and 0.8, p ≤ 0.003, respectively). eDNA metabarcoding is a powerful tool to survey the complexity of pollen aerobiology and distinguish spatial and temporal profiles of local pollen to a far deeper level than traditional counting methods. However, further research is required to optimise the metabarcode target to enable reliable detection of pollen to genus and species level.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Polen , Australia , ADN Ambiental , Monitoreo del Ambiente/métodos , Poaceae , Polen/clasificación , Polen/genética
19.
Oecologia ; 200(3-4): 441-454, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36367567

RESUMEN

Functional trait-based approaches have provided advances in the understanding of community assembly rules. Broad generalisations remain, however, limited due to the idiosyncratic nature of taxa and ecosystems, especially in tropical regions. We use fine scale resolution (30 m grid) environmental variables and community surveys from nearly 100 secondary tropical forest sites to study niche-based or neutral assembly mechanisms in ground dwelling ants. This provides a unique opportunity for understanding fine scale drivers of taxonomic, functional and phylogenetic diversity in a region characterized by large topographic and climatic differences on a relatively small geographic scale. Precipitation emerged as the most consistent environmental correlate, in shaping taxonomic, phylogenetic and functional aspects of the communities. Functional diversity was weakly associated with topography and temperature related variables. The fourth corner model revealed that femur, scape and mandible length were key traits in response to precipitation, and that communities showed a functional homogenization towards shorter appendages at wetter sites. Our results suggest that neutral and deterministic assembly processes act in concert to shape the taxonomic, phylogenetic and functional aspects of leaf litter ant assemblages. The use of multiple complementary metrics and approaches along environmental gradients are powerful to reveal the subtilities of assembly processes and provide insight into the ways future communities might change.


Asunto(s)
Hormigas , Animales , Ecosistema , Filogenia , Clima , Procesos Estocásticos
20.
Front Plant Sci ; 13: 912627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795347

RESUMEN

This study investigates the reliability of phytolith assemblage analysis for characterizing subtropical vegetation and explores the potential for using these modern phytolith-vegetation relationships for paleoenvironmental interpretation in southeastern China. The samples were collected from five common subtropical vegetation communities in the Daiyun Mountains, southeastern China, with the above-ground vegetation recorded at each plot. Constrained ordination analysis was used to determine the most important factor governing the variations in phytolith assemblages that could be quantitatively reconstructed with weighted averaging partial least squares regression (WAPLS). The relationship between modern phytolith assemblages and the parent vegetation, as well as production, dispersal, and taphonomic processes, was discussed. Results demonstrated that the main subtropical biomes in southeastern China could be well distinguished by soil phytolith assemblages. In particular, the overall amount of tree coverage was well represented by topsoil phytolith assemblages. Grass silica short cell phytoliths (GSSCP) tended to occur in higher proportions in open habitats (shrub-meadow) at higher elevations, whereas non-grass phytolith morphotypes attained higher frequencies under mixed and broadleaf forests at lower elevations. Human-induced deforestation might increase the frequency of GSSCP within the bulk phytolith assemblage. Our results constitute the primary phytolith reference data for the subtropical zone in southeastern Asia where vegetation change during the Holocene period, particularly forest shifts, anthropogenic deforestation, and early agriculture are poorly documented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA