Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 151: 110848, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980386

RESUMEN

Time-intensity (TI) dynamic sensory characterization was used to evaluate the temporal sweet and bitter perception of six commonly available steviol glycosides (Rubusoside, Stevioside, Rebaudioside C, Rebaudioside A, Rebaudioside D and Rebaudioside M). All parameters extracted from TI curves significantly varied among the six samples for both sweetness and bitterness. Compared to other compounds, Rebaudioside M and Rebaudioside D had faster onset of sweetness, quicker decay of aftertaste, and were nearly devoid of bitterness. Conversely, Rubusoside and Stevioside demonstrated an immediate distinct bitter taste and lingering aftertaste. Based on these results, a further investigation into the relationship between temporal properties and chemical structures was conducted. It was found that fewer glucosyl groups on C-19 would result in shorter time for initial stimulation and longer perception of bitterness, whereas more glucosyl groups on C-13 could trigger a faster increase and stronger intensity of sweetness. A shorter time to the peak for sweetness was obtained when the ratio of the number of glucosyl groups on C-13 to that on C-19 was lower, although there was no such effect on bitter taste. These relationships were explained by the adsorption and desorption of these compounds on the taste receptors. Higher numbers and larger sizes of substitutions at the C-19 position of steviol glycosides can increase their desorption percentages and lead to a quicker decay of sweetness. Meanwhile, compounds with fewer glucosyl groups, such as Rubusoside and Stevioside, presented lower desorption and thus longer bitter aftertaste. Overall, the addition of glucosyl groups would generate stronger sweetness and less bitterness if the substituent number on C-13 was closer to that on C-19. These findings conveyed insights into how to modify steviol glycosides to enhance their quality as sweeteners.


Asunto(s)
Edulcorantes , Gusto , Diterpenos de Tipo Kaurano , Aditivos Alimentarios , Glucósidos
2.
Curr Protoc Plant Biol ; 1: 345-358, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27868090

RESUMEN

Terpenes/terpenoids constitute one of the largest classes of natural products, this is due to the incredible chemical diversity that can arise from the biochemical transformations of the relatively simple prenyl diphosphate starter units. All terpenes/terpenoids comprise a hydrocarbon backbone that is generated from the various length prenyl diphosphates (a polymer chain of prenyl units). Upon ionization (removal) of the diphosphate group, the remaining allylic carbocation intermediates can be coaxed down complex chemical cascades leading to diverse linear and cyclized hydrocarbon backbones, which can then be further modified with a wide range of functional groups (e.g. alcohol, ketones, etc.) and substituent additions (e.g. sugars, fatty acids). Because of this chemical diversity, terpenes/terpenoids have great industrial uses as flavors, fragrances, high grade lubricants, biofuels, agricultural chemicals and medicines. The protocols presented here focus on the extraction of terpenes/terpenoids from various plant sources and have been divided into extraction methods for terpenes/terpenoids with various levels of chemical decoration, from the relative small, nonpolar, volatile hydrocarbons to substantially large molecules with greater physical complexity due to their chemical modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA