Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 408: 131199, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097235

RESUMEN

Solids concentration, temperature, and digester configuration were subjected to biomethanation study to identify effective retrofitting schemes for old swine waste digesters. Batch assays were commenced to determine an appropriate scenario at 30-55 °C and total solids 1-3 %TS. Sub-thermophilic temperature (45 °C) was found desirable with an additional 11.1 % methane yield, while digestion at higher TS induced ammonium inhibition. Subsequent batch experiments lasted 72 hrs for hydrolytic-acidogenic assessment under various temperatures. Heating control at 45 °C and 55 °C for 24 hrs increased hydrolysis efficiency 4.6-5.7 folds above control but showed no significant difference (α = 0.05) between them. Limited heat supply from biogas engine dictated the continuous digestion study to operate pre-hydrolysis reactor at maximum temperature of 45 °C. The two-stage strategy demonstrated best overall performances at the sub-thermphilic combination, raising methane yield by 35.4 %. Next-Generation Sequencing indicated remarkable shifts in abundance and diversity, especially for hydrolytic organisms, which expanded from 54 to 70.2 % by sub-thermophilic temperature.


Asunto(s)
Biocombustibles , Reactores Biológicos , Estiércol , Metano , Temperatura , Animales , Metano/metabolismo , Porcinos , Hidrólisis , Eliminación de Residuos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA